Mulighetsstudie
Bruk av fleksibilitet i nettselskap
Forside: Figuren fra Energi Norges designmanual som symboliserer strømnettet.
Energi Norge rapport nr. 1/2021
Mulighetsstudie om bruk av fleksibilitetsressurser hos nettselskap

Utgitt av: Energi Norge AS
Forfatter: Kristian Wang Høiem, Vivi Mathiesen, Iver Bakken Sperstad og Hanne Sæle

ISBN:
ISSN:

Emneord: Fleksibilitet, nettinvestering, nettplanlegging, nettselskap

Energi Norge
Postboks 7184 Majorstuen,
0307 Oslo

www.energinorge.no
Innhold

1 Innledning og bakgrunn for studien .. 6
 1.1 Bakgrunn .. 6
 1.2 Om undersøkelsen .. 6
 1.3 Begrepsavklaring .. 7
 1.3.1 Fleksibilitet .. 7
 1.3.2 Tilknytning og anleggsbidrag ... 8
 1.3.3 Virkemidler for fleksibilitet .. 8
 1.3.4 Aggregator .. 11

2 Status for fleksibilitet .. 12
 2.1 Tilgjengelig fleksibilitet i dag ... 12
 2.1.1 Fleksibilitetsressurser ... 12
 2.1.2 Fleksibilitetsavtaler ... 13
 2.1.3 Hva fleksibilitet brukes til .. 14
 2.1.4 Hvordan aktiveres fleksibilitet ... 14
 2.2 Utfordringer i nettdriften ... 15
 2.3 Nettplanlegging og nettinvestering i dag ... 16
 2.3.1 Hva utløser behov for nettinvesteringer ... 16
 2.3.2 Arbeidsprosess for å vurdere behov for nettinvesteringer 16
 2.3.3 Fleksibilitet som alternativ i nettplanleggingen .. 17

3 Barrierer og muligheter for å ta i bruk fleksibilitet ... 19
 3.1 Hva mener netselskapene skal til? ... 19
 3.2 Netselskapenes behov for fleksibilitet ... 19
 3.3 Nye vurderinger når netselskap skal ta i bruk fleksibilitet .. 20
 3.3.1 Om markedsløsninger ... 20
 3.3.2 Vurdering av risiko .. 21
 3.4 Netselskapenes krav til fleksibilitet .. 22
 3.5 Kultur og arbeidsprosesser hos netselskapene ... 23
 3.6 Kompetanse hos netselskapene .. 24
 3.7 Modenhet på kundesiden ... 25
 3.8 Aggregator-rollen .. 25
 3.9 Netselskapenes krav til systemløsninger ... 26
 3.10 Behov for standardavtaler ... 27
 3.11 Regulatoriske barrierer ... 27
1 Innledning og bakgrunn for studien

1.1 Bakgrunn
Det er skrevet flere rapporter om fleksibilitet og temaet har fått mye oppmerksomhet gjennom flere år, men det er likevel begrenset bruk av fleksibilitet som virkemiddel i drift og planlegging av nettet. Med denne rapporten ønsker vi å se på barrierer og muligheter som nettselskapene står overfor når det gjelder fleksibilitet.

I 2020 publiserte reguleringsmyndighetene i Europa (CEER) "DSO procedures for procurement of flexibility". Tilnærmeningen i CEER-rapporten er at fleksibilitetsmarkeder først kan utvikles og vokse frem når nettselskapene identifierer sine nettutfordringer og etterspør fleksibilitetstjenester gjennom anbud eller andre markedsløsninger. Denne tilnærmeningen tar utgangspunkt i nettselskapene som avgjørende for å utvikle markedsløsninger for fleksibilitet. Denne rapporten har samme utgangspunkt.

Med tilveksten av nytt forbruk og mer solkraft og vindkraft, forventes driften av nettet å bli mer utfordrende fremover. Vi forventer at fleksibilitet blir et sentralt virkemiddel for nettselskapene i drift og planlegging. Utfordringene vil være forskjellige avhengig av nettetypen, og de mest fremtredende utfordringene synes å være knyttet til kapasitetsproblemer i høyspent og regionalt distribusjonsnett (flaskehalser og tidvis utilstrekkelig redundans/reserver i nettet).

Denne rapporten er basert på dybdeintervjuer blant syv norske nettselskap. Rapporten er en samlet oppsummering av intervjuene og følger samme struktur som intervjuguiden hvor vi først gjennomgår status for fleksibilitet i nettselskapene i dag og etterpå gjennomgår nettselskapenes forventninger til frem mot 2030/40.

1.2 Om undersøkelsen
For å få en oversikt over status på hvordan nettselskapene forholder seg til fleksibilitet i dag og i fremtiden, gjennomførte Energi Norge og FME CINELDI dybdeintervjuer av 2-3 ressurspersoner fra syv ulike nettselskap med ulik størrelse i antall kunder (små/mellomstore/store). Intervjuene ble gjennomført i løpet av mars/april 2021. Nettselskapene representerer om lag 1,5 millioner kunder og har ca. 80% av de eksisterende fleksible kundene (se Tabell 1). Nettselskapene representerer også ulike geografiske regioner; ett fra Nord-Norge, ett fra Nord-Vestlandet, tre fra Vestlandet, og to fra Østlandet. Nettnivåene nettselskapene dekte, var alt fra 230 V til 1 kV lavspent distribusjonsnett (LS-distribusjonsnett), 1 kV til 22 kV høyspent distribusjonsnett (HS-distribusjonsnett), til regionalt distribusjonsnett opp til 132 kV.

1 https://www.ceer.eu/flexibility-procurement
2 CINELDI er et forskningssenter for fornybar energi (FME). For mer informasjon: www.cineldi.no
Tabell 1: Antall nettkunder/strømkunder fordelt på nettnivå og type forbruk som representeres av nettselskapene i undersøkelsen pr. 31.12.2019³.

<table>
<thead>
<tr>
<th>Nettnivå</th>
<th>Type forbruk</th>
<th>Antall strømkunder pr. 31.12.2019</th>
<th>%-andel dekning strømkunder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nettsselskap i undersøkelsen</td>
<td>Alle nettsselskap i Norge</td>
<td></td>
</tr>
<tr>
<td>Distribusjonsnett</td>
<td>Ordinært forbruk</td>
<td>ca. 1,54 millioner</td>
<td>ca. 3,1 millioner</td>
</tr>
<tr>
<td></td>
<td>Fleksibelt forbruk</td>
<td>1712</td>
<td>2124</td>
</tr>
<tr>
<td>Regionalt Distribusjonsnett</td>
<td>Ordinært forbruk</td>
<td>88</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Fleksibelt forbruk</td>
<td>17</td>
<td>23</td>
</tr>
</tbody>
</table>

Nettselskapene som ble intervjuet, fikk tilsendt en intervjuguide på forhånd og spørsmålene dreide seg om status på tilgjengelig fleksibilitet i dag, hva som setter i gang nettinvestering i dag og hvordan nettselskapene ser for seg bruk av fleksibilitet i drift og planlegging av nettet framover mot 2030/2040. Intervjuguiden er tilgjengelig i sin helhet i vedlegg 1.

Målet med intervjuene var å kartlegge praktiske, tekniske, regulatoriske eller andre barrierer for at nettselskap tar i bruk fleksibilitet i drift og planlegging av nettet.

Resultatene fra kartleggingen danner utgangspunkt for forslag om tiltak for at nettselskap skal kunne ta i bruk fleksibilitet i planlegging og drift der dette er kostnadseffektivt. Det tas forbehold om at rapporten er skrevet basert på en samlet tolkning av informasjonen som kom frem i intervjuene, og resultatene trenger ikke være direkte representativt for det enkelte nettselskap.

Datainnsamlingen i forbindelse med den gjennomførte aktiviteten er godkjent av Norsk Samfunnsvitenskapelig Datatjeneste⁴ (NSD).

1.3 Begrepsavklaring

1.3.1 Fleksibilitet

Når vi snakker om fleksibilitet i denne rapporten, baserer vi oss på følgende definisjon fra CINELDI⁵:

Fleksibilitet er evne og vilje til modifisering av produksjons- og/eller forbruksmønster, på et individuelt eller aggregert nivå, ofte som en reaksjon på et eksternt signal, for å kunne tilby en tjeneste til kraftsystemet eller opprettholde stabil nettdrift.

Fleksibilitetsressurser kan være produksjon (f.eks. fra fornybare kilder eller dieselaggregat), lagring (f.eks. batterier eller pumpekraft) eller forbruk av elektrisk

⁴ www.nsd.no
energi. Disse ressursene kan levere fleksibilitetstjenester til nettselskap. Nettselskap kan ta i bruk fleksibilitet for å løse utfordringer knyttet til spenningskvalitet, flaskehals-håndtering og kapasitetsutfordringer. For eksempel kan fleksibiliteten brukes av nettselskap for å utjevne last i nettet. Nettselskapet vil da typisk ha en avtale med en fleksibilitetstjenestetilbyder som på signal (prissignal eller annet) kan agere fleksibelt ved å tilpasse sitt forbruk eller sin produksjon.

Det skiller mellom to typer fleksibilitet; implisitt og ekspisitt. Førstnevnte baserer seg på at strømkunder reagerer på prissignaler gjennom nettleien for å endre forbruket sitt. Den andre baserer seg på at nettselskapet aktivt går ut og anskaffer og aktiverer fleksibilitetstjenester til opp- eller ned-regulering av forbruk og/eller produksjon.

1.3.2 Tilknytning og anleggsbidrag

Nettselskapet har plikt til å tilknytte ny produksjon og nytt forbruk når det er driftsmessig forsvarlig og tilstrekkelig nettkapasitet for hele produksjonen eller forbruket. I situasjoner der dette ikke er tilfelle, må nettselskapene utrede, søke konsesjon og gjennomføre nødvendige investeringer i nettanlegg. Regelverket gir nettselskapet anledning til å kreve anleggsbidrag slik at nettkunden betaler hele eller deler av nettinvesteringen. Anleggsbidrag kan også kreves for utredningskostnadene knyttet til nettinvesteringer og ved forsterkning av nettet til eksisterende kunde, samt når kunden ber om økt leveringskvalitet.

Dersom kunden godtar anleggsbidraget og fatter en investeringsbeslutning, realiseres prosjektet og nettforsterkningen. Dersom kunden ikke ønsker å betale anleggsbidraget (typisk hvis prosjektet ikke er bedriftsøkonomisk lønnsomt med estimert anleggsbidrag), bortfaller tilknytningsplikten. I dette tilfelle behøver ikke nettselskapet å rapportere til NVE, som kun blir informert om slike tilfeller dersom kunden velger å klage på beslutningen om anleggsbidrag.

Dersom kunde og nettselskap er enige, kan ny kunde tilknyttes på vilkår om utkobling eller redusert forsyning. Dersom kunden senere ønsker en ordinaire tilknytning (altså tilknytning uten vilkår om utkobling) kan nettselskapet kreve anleggsbidrag i den grad det blir nødvendig å investere i nettet for å sikre tilknytningen.

1.3.3 Virkemidler for fleksibilitet

6 https://lovdata.no/forskrift/1999-03-11-302/§16-1
7 https://lovdata.no/forskrift/2019-10-24-1413/§3-2
Tabell 2: Virkemidler og mekanismer for å utløse fleksibilitet

| Effekt- tariffer | • Prissetter effekt for å synliggjøre at dette er en knapp ressurs
• Skal gi kunden prissignaler som gir insentiver til å jevne ut forbruk |
|------------------|--|
| Utkobbar tariff (UKT) | • Kundene får redusert nettleien mot at kunden kan kobles ut ved behov i nettet
• Er rettet mot kunder som kan klare seg uten forsyning i perioder |
| Tilknytnings- avtaler | • Kan være tilknytning av forbruk med vilkår om utkobling eller redusert strømforsyning |
| Bilaterale avtaler | • Nettelskapet inngår avtale med kunder i område med nettutfordringer |
| Fleksibilitetsmarked | • Tilbydere og etterspørrelegger legger inn bud i en markedslosning
• Daglig/ukentlig/månedlig klarering av markedet |
| Auksjon/ Anbud | • Kjøpe inn fleksibilitet til en spesifikk nettutfordring ved å be om tilbud (auksjon) eller tilby en pris (anbud med fastpris) |

I juni 2021 ble ny nettleiestruktur, også kjent som effekttariff vedtatt av departementet. Formålet er å gi kundene insentiv til å jevne ut strømforsøket for å redusere toppplasten og på den måten legge til rette for bedre utnyttelse av strømnettet og mer rettferdig fordeling av nettkostnadene mellom strømkundene. Nettleien skal i større grad fastsettes på grunnlag av kundenes effektforbruk og energiholden kan maksimalt utgjøre 50 prosent av nettelskapets inntekter fra hver kundegruppe.

Effekttariffer skal gi insentiver gjennom at forbruksmønsteret, ikke bare forbruksmengden, påvirker kostnaden ved å bruke strøm. Installasjon av effektvakter

8 Tabellen er basert på systematikk fra THEMA, første gang presentert på Energi Norge Webinar om Sluttbrukerfleksibilitet den 29.10.20.
9 https://lovdata.no/dokument/LTI/forskrift/2021-04-07-1072
10 https://www.regjeringen.no/contentassets/39b5f98aa3d649e18c49d1124db7d5c1/forskrift-om-okonomisk-og-teknis-rapportering-endelig.pdf
i bygg og industri er et eksempel på tiltak som blir gjort som en tilpasning til insentiver i effekt tariffer.

Utkoblbar tariff (UKT) eller særskilt tariff for fleksibelt forbruk, innebærer redusert nettleie mot at kunden kobles ut ved behov (akutt eller forventet knapphet på overføringskapasitet, f.eks. i feilsituasjoner, ved planlagt vedlikehold av nett og når det er høy last i nettet)\(^\text{11}\). Statnett har i flere år tilbudt denne tariffen til sine forbrukskunder og har brukt UKT i systemdriften. Tariffen er tilgjengelig gjennom fire ulike kontrakter med ulik varslings- og utkoblingstid\(^\text{12}\). Den "gunstigste" kontrakten har gitt reduksjon i fastleddet på nettleien på 95%. Statnett avvikler UKT da de mener nødvendig fleksibilitet for systemdriften er tilgjengelig gjennom regulerkraftmarkedet\(^\text{13}\). Mange netselskap tilbyr UKT på de samme eller likende vilkår som Statnett har tilbudt, og flere viderefører praksisen selv om Statnett nå avvikler ordningen fra sin side. Flere av respondentene i undersøkelsen tilbyr denne tariffen. Et netselskap som tilbyr UKT, må tilby denne tariffen til alle kundene i sitt nett uavhengig av om det er behov for utkobling der den aktuelle kunden er lokalisert.

Tilknytning med vilkår om utkobling eller redusert forsyning, også omtalt som betinget tilknytning eller tilknytning på vilkår, er et nytt virkemiddel i NEM-forskriften (Forskrift om nettregulering og marked). Denne forskriftsendringen ble vedtatt av Olje- og energidepartementet i april 2021\(^\text{14}\). Det innebærer at nytt forbruk kan tilknyttes nettet med avtale om utkobling eller redusert forsyning. Partene må være enige om at avtaletypen er hensiktsmessig for begge. En fordel ved en slik avtale er at kunden kan slippe å betale anleggsbidrag og kan tilknyttes nettet raskere enn ellers. Nettelskapet på sin side kan utsette nettinvesteringer. Dersom en kunde som har fått tilknytning på vilkår om utkobling/redusert forbruk senere ønsker tilknytning med ordinarer forsyning, og dette krever nettinvesteringer, så skal netselskapet kreve anleggsbidrag etter gjeldende regelverk, dvs. kapittel 16 i kontrollforskriften\(^\text{6}\). Kundens ønske om tilknytning vil i slike tilfeller være å regne som en ny tilknytning.

Tilgang på fleksibilitet gjennom markedsløsninger kan på samme måte som andre virkemiddel for fleksibilitet utgjøre alternativ til nettinvesteringer eller andre driftstiltak som løsning på kapasitetsutfordringer og feilsituasjoner i strømnettet. Markedsmessige løsninger kan deles i to: På den ene siden auksjoner og anbud, og lokalt marked for fleksibilitet på den andre. I auksjon vil netselskapet kjøpe inn fleksibilitet til en spesifikk nnettforordning ved å be om tilbud (auksjon) eller tilby en pris og be om tilbud (anbud med fastpris). I et lokalt fleksibilitetsmarked vil netselskap kjøpe fleksibilitet fra én eller flere tilbydere. I begge tilfeller legges det opp til konkurranse mellom tilbyderne og det er typisk åpenhet om pris.

\(^{12}\)Varslings- og utkoblingstid: 15 min, 2 t, 12 t varslingstid med ubegrenset utkobling, eller 15 min varsling med 2 timers utkobling. Hentet fra Statnets tariffhette 2021, https://www.statnett.no/foraktorer-i-krafttransjens/tariff/tariffer-i-sentralnettet/.

\(^{14}\)Se https://www.regjeringen.no/no/aktuelt/forskriftsendring/id2843252/.
En lokal markeds.sløsning for fleksibilitet kan utformes på flere måter, med flere produkter:\footnote{Se for eksempel NODES som driver markedsplass for fleksibilitet: \url{https://nodesmarket.com/}}:

- Innkjøp av langsiktige bilaterale avtaler tilsvarende dagens fleksible forbruk, men innkjøpene skjer via auksjoner i områder der det finnes et spesifikt behov.
- Innkjøp av langsiktig fleksibilitet via bud og/eller aggregatorer i områder med spesifikke behov.
- Innkjøp av kortsiktig fleksibilitet (for eksempel neste dag eller umiddelbart) basert på løpende budkurver i et lokalt markedsystem (helst helautomatisk).
- Innkjøp av kortsiktig fleksibilitet i et markedsystem som er integrert med andre markeder, for eksempel energimarkedet og Statnetts reservekraftmarkeder. Det vil være behov for koordinering/prioritering mellom ulike formål.

\begin{itemize}
\item I en markeds løsning vil man søke å kjøpe fleksibilitet av den som kan løse utfordringer til en lavest mulig kostnad.
\item Vi legger til grunn at et velfungerende fleksibilitetsmarked kan supplere prissignaler i tariffer og at det ene virkemiddelet ikke utelukker det andre, men at virkemidlene sammen bidrar til å gjøre fleksibilitet mer tilgjengelig for nettselskapene.
\item I et fleksibilitetsmarked er det aktuelt med aggregatorer (se kap. 1.3.4), både for å forenkle deltakelse fra nettkundene og for å oppnå tilstrekkelig volum (portefølje av fleksibilitetsressurser) til at nettutfordringer kan løses.
\end{itemize}

\section*{1.3.4 Aggregator}

En aggregator samler fleksibilitet fra flere ulike laster som kan komme fra både produksjon og forbruk, slik at fleksibilitet kan leveres i volum (MW) og tid (MWh) som kan dekke etterspurte behovet for fleksibilitet. Generelt kan aggregatorrollen deles i to:

- Fysisk aggregering: systemer og signaler for å slå av/på (evt. redusere) produksjon og forbruk.
- Markedsaggregering: aggregert fleksibilitet inkluderes i bud inn i ulike markeder som krever et balanseansvar.

En slik todeling er relevant for å skille mellom tekniske løsninger ut mot kundene og budgivning/markeds håndtering. I en slik løsning kan man for eksempel lage tekniske løsninger for å ta i bruk fleksibilitet fra elbiler uten at man må etablere et balanseansvar. Denne fleksibiliteten kan da tas videre til en markedsaggregator som legger inn bud i markedene. Disse to delene av en aggregatorrolle vil imidlertid ofte være integrert hos en og samme aktør.
2 Status for fleksibilitet

Undersøkelsen avdekket at, blant nettselskapene som er med i undersøkelsen, er det svært begrenset bruk av fleksibilitet i driften av nettet. Utover pilotprosjekter er fleksibilitet kun i bruk gjennom direkte kontrakter med kunder på utkobbar tariff (UKT). Nettselskapene i undersøkelsen håndterer stort sett nettutfordringer med andre virkemidler enn fleksibilitet.

2.1 Tilgjengelig fleksibilitet i dag

I den grad nettselskapene benyttet seg av fleksibilitet i ordinær drift, var dette gjennom kontrakter om utkobbar tariff (UKT). Nettskap kan bruke UKT til å koble ut forbruk når de har "relevante nettmessige behov". Praksis og omfang av bruken av UKT varierer imidlertid mye mellom nettselskapene. De nettselskapene som har UKT i utstrakt og rutinemessig bruk, bruker det hovedsakelig som et verktøy for å håndtere ellers utilstrekkelige reserver i HS-distribusjonsnettet. Utenom UKT var respondentenes erfaring med bruk av fleksibilitet avgrenset til pilotprosjekter.

I tilfeller hvor nettselskapene ser på bruk av fleksibilitet som et alternativ til tradisjonell nettinvestering, er det i dag ulik tilnærmning på hvordan nettselskapene undersøker fleksibilitet hos kundene sine. Flere av nettselskapene rapporterer at de ikke går aktivt ut og undersøker tilgangen på fleksibilitet. Blant de nettselskapene som faktisk undersøker mulighetene, gjøres dette hovedsakelig ved tilknytning av nye kunder, hvor det er forventet begrensninger i nettet som følge av ny kundetilknytning.

2.1.1 Fleksibilitetsressurser

Det var forskjeller i hva respondentene regnet som å inngå i begrepet fleksibilitetsressurs16 og det kom også frem at nettselskapene har ulik erfaring med bruk av fleksibilitetsressurser.

Flere forskjellige fleksibilitetsressurser ble nevnt under kartleggingen. Disse spredte seg fra mer kjente og etablerte fleksibilitetsressurser som elkjeler og andre oppvarmingsenheter i større bygninger, via transportenheter til land- og havbruk, industri og datasentre. Tabell 3 gir en oversikt over kunder som mulig kan tilby fleksibilitet, og som ble nevnt under kartleggingen. Grønn markering indikerer eksisterende fleksibilitet som benyttes i dag, gul markering indikerer kunder som kan være aktuelle fleksibilitetstilbydere de neste årene, resten er fleksibilitet som nettselskapene ser for seg vil bli relevant på lengre sikt. Virkemidlene og mekanismene for å utnytte fleksibilitet fra disse ressursene varierer og vil bli nærmere beskrevet i de følgende delkapitlene.

16 Et forslag på hva som kan inngå i begrepet fleksibilitetsressurser ble gitt i vedlegg V2 i intervjuguiden.

<table>
<thead>
<tr>
<th>Transport</th>
<th>Bygg</th>
<th>Industri og næringsliv</th>
<th>Lagring/produksjon/annet</th>
</tr>
</thead>
<tbody>
<tr>
<td>El-ferger (fergelading)</td>
<td>Kommunale bygg (skoler, idretts- og svømmehaller, bibliotek, kino, ventilasjons-anlegg osv.)</td>
<td>Fiskeindustri/ aquaanlegg (oppdrett, foredlingsanlegg)</td>
<td>Fjernvarmesentral (med spissvarmegenerator)</td>
</tr>
<tr>
<td>Hybridskip (landstrøm)</td>
<td>Borettslag/ Husholdninger</td>
<td>Gartnerier</td>
<td>Eiere av batteribanker</td>
</tr>
<tr>
<td>Busselskap</td>
<td>Sykehjem</td>
<td>Landbruk</td>
<td>Småkraftverk</td>
</tr>
<tr>
<td>Tungtransport-selskap</td>
<td>Sykehus</td>
<td>Industri (smelteverk, elektroysefabrikk)</td>
<td>Plusskunder (ev. med eget batteri)</td>
</tr>
<tr>
<td>Elbileiere(^\text{17})</td>
<td>Næringsbygg (butikker, kjøpesentre, kontorbygg, bilforhandlere, o.l.)</td>
<td></td>
<td>Datasentre</td>
</tr>
<tr>
<td>Offentlige ladepunkter / ladestasjoner</td>
<td>Flyplasser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Et kjennetegn ved flere av de aktuelle fleksibilitetsressursene ovenfor er at de kan ha alternativ energiforsyning: Bl.a. hybridskip, sykehus, datasenter og oppdrettsanlegg kan ha egne reserver i form av nødstrømanlegg (UPS), nødaggregat, dieselsfuglesenter, o.l. Samtidig bør det påpektes at noen av disse, for eksempel sykehus, har kritiske funksjoner som krever elektrisitet til enhver tid. Det innebærer at de ikke nødvendigvis kan eller vil være fleksible når nettselskapet trenger det.

2.1.2 Fleksibilitetsavtaler
Blant de nettselskapene som bruker fleksibilitetsløsninger i dag, er særlig UKT aktuell. Denne avtalen har blitt praktisert i flere varianter:

- Momentanutkobling av forbruk med maks 4 timer varighet,
- Forbruk kobles ut med varsel (kunden får tid til å starte andre alternative energiformer),
- Forbruk kobles ut i korte perioder (noen timer),
- Vanlig avtale med redusert tariff der utkoblingstiden er ubegrenset, og
- en mellomvariant med maks antall dager med utkobling per år.

\(^{17}\) Elbiler reagerer bare på prissignal slik at forbruk kan styres. Effekt kan per i dag ikke leveres fra elbilbatterier ("vehicle-to-grid").
Enkelte nettselskap har det som krav i avtalen at utkoblingen av kunden skjer ved automatisert fjernstyring, kunden vil så bli varslet i etterkant når kunden kan kobles inn igjen.

Det er også mulig å inngå en individuell KILE-avtale\(^\text{18}\) med større kunder (forbruk > 400 MWh/år) som slår inn når avbruddet (utkoblingen) ikke er planlagt. Dette er ikke en avtale for å aktivere fleksibilitet, men en egen avtale med enkelte kunder som gjør at nettselskap kan redusere egne KILE-kostnader. Likevel kan denne type avtaler sees på som å ha flere likheterstrek med fleksibilitetsavtaler: De kan muliggjøre mer tilknytning av last i nettet, og samtidig reduсерe risikoen nettselskapene tar på seg i form av potensielle KILE-kostnader. En slik avtale kan også bevisstgjøre kundene om at reduksjon av forbruk i enkelte perioder er en nyttig tjeneste å tilby nettselskapene.

2.1.3 Hva fleksibilitet brukes til

Fleksibilitet har i hovedsak blitt tatt i bruk for å håndtere kapasitetsutfordringer. Andre formål som ble nevnt, var forbedring av spenningskvalitet i lavspenningsnettet (LS-distribusjonsnettet). En oppsummering av hvilke ressurser som er brukt til hvilke formål og hvorviktig nettnivå de kan anvendes, er presentert i Tabell 4.

<table>
<thead>
<tr>
<th>Fleksibilitetløsninger</th>
<th>Formål</th>
<th>Hvor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleksible strøkmunker på UKT</td>
<td>Sikre tilstrekkelig reserver/redundans</td>
<td>HS-distribusjonsnett</td>
</tr>
<tr>
<td>Effekttariffer for næringskunder</td>
<td>Redusjon av topplast</td>
<td>HS-distribusjonsnett</td>
</tr>
<tr>
<td>Effekttariffer for husholdningskunder</td>
<td>Redusjon av topplast</td>
<td>LS-distribusjonsnett</td>
</tr>
<tr>
<td>Batterier</td>
<td>Forbedring av spenningskvalitet (demoprosjekt)</td>
<td>LS-distribusjonsnett</td>
</tr>
</tbody>
</table>

2.1.4 Hvordan aktiveres fleksibilitet

Nettselskap som bruker UKT har typisk automatisk utkobling av last hos den aktuelle kunden. Det vil si at nettselskapet har en fjernstyring direkte inn mot anleggene. I noen tilfeller tar nettselskapet direkte kontakt og ber forbrukeren om å koble ut eller redusere lasten selv. Ingen av dem vi snakket med, hadde egne systemer for å koble kunden automatisk tilbake på systemet; dette ble i alle tilfellene gjort manuelt av Kunden etter henvendelse fra nettselskapet.

De pilotprosjektene vi fikk informasjon om, har automatiske systemer for både ut- og innkobling av last hos kunden.

Bortsett fra UKT og enkelte pilotprosjekter, er det foreløpig ingen andre etablerte kanaler eller systemer mellem nettselskap og fleksibilitetstilbydere som brukes til å aktivere fleksibilitet.

\(^{18}\) Individuelle avtaler om direkte utbetaling av avbruddskostnader (Kvalitetsjusterte inntektsrammer ved ikke levert energi, KILE): https://lovdata.no/forskrift/1999-03-11-302/§9-3
En alternativ løsning for å aktivere forbrukerfleksibilitet, er å gå ut i media19 og informere om anstrengt kapasitet i nettet og be sluttsbrukerne om å for eksempel ikke lade elbilen om morgenen.

2.2 Utfordringer i nettdriften

Hvilken utfordring som er mest fremtredende, avhenger for det meste av omgivelsene (både geografi og værforhold), spenningsnivå, topologien til nettet (masket eller radielt nett), og den tekniske tilstanden til komponentene i nettet. Samlet sett virker de mest fremtredende utfordringene for nettselskapene til å være knyttet til HS-distribusjonsnett og det regionale distribusjonsnettet. Enkelte nettselskap, særlig de mindre, trakk også fram utfordringer i LS-distribusjonsnett. Mange av de mest fremtredende utfordringene forekommer i nett med lange radialer.

Følgende utfordringer i dagens nett er også forventet å øke i omfang de neste årene:

- Kapasitetsutfordringer i HS-distribusjonsnett og regionalt distribusjonsnett var overordnet sett de mest fremtredende utfordringene for nettselskapene. I de fleste tilfeller innebærer dette perioder med utilstrekkelig grad av redundans eller reserver etter omkobling i masket HS-distribusjonsnett som er driftet radielt. Dette medfører flaskehalser og risiko for overbelastning ved utfall.
- Kapasitetsutfordringer i innmatingstransformatoren for HS-distribusjonsnett ble også nevnt spesifikt av enkelte.
- Flere av nettselskapene beskrev flaskehalsproblematikk i overliggende nett (regionalt distribusjonsnett eller transmisjonsnett) som det mest avgrensende for driften. Det var særlig i intervjene med de mindre nettselskapene at dette var en fremtredende utfordring. Noen av de større nettselskapene trakk frem eksempler på at gradvis lastøkning ville skape kapasitetsutfordringer for transformering ned til regionalt distribusjonsnett.
- Spenningskvalitet ble også trukket fram som utfordring av de fleste nettselskapene. Dette var i hovedsak lav spenning (langsomme spenningsvariasjoner) i lange radialer i LS-distribusjonsnett, som oftest i grisgrendte strøk.
- Et par nettselskap trakk også frem overspenningsproblemer om sommeren i HS-distribusjonsnett med mye vannkraftproduksjon eller i LS-distribusjonsnett med plusskunder (solkraftproduksjon).

Mange av utfordringene er knyttet til den omfattende elektrifiseringen som pågår. Dette er en vesentlig driver for nettoplanlegging og eventuelle nettinvesteringer. Noen nettselskaper påpekte at utfordringer med håndtering av flaskehalser ofte inntreffer i tilfeller der de venter på konsesjon for nettinvesteringer.

Driftsutfordringene ovenfor kan bety et behov for fleksibilitet, men det er ikke gitt at bruk av fleksibilitet vil være en egnet og kostnadseffektiv løsning.

19 Eksempler: https://www.nrk.no/nordland/tok-strommen-i-narvik- -sendte-den-til-troms-1.12179917 Og https://e24.no/olje-og-energi/i/62BLm0/ny-stroemrekord-i-norge
2.3 Nettplanlegging og nettinvesteringer i dag
Dette delkapitlet vil gi en oversikt over hva respondentene sier utløser behov for nettinvesteringer i dag, og hva som skal til for at fleksibilitet skal bli vurdert som alternative tiltak i nettplanleggingsprosessen for å redusere nettinvesteringer.

2.3.1 Hva utløser behov for nettinvesteringer

Gjennom kartleggingen fremstod kundeinitierte behov for nettinvesteringer som de mest fremtredende. Særlig gjaldt dette tilknytning av nytt forbruk i HS-distribusjonsnett, men kundeinitierte behov for nettplanlegging i LS-distribusjonsnett ble også trukket frem av enkelte nettselskaper. Det nye forbruket ble ofte sett i sammenheng med den raske elektrifiseringen som flere regioner opplever nå. Eksemplene som ble trukket fram inkluderte:

- Fergelading.
- Hurtigladere til både bil og buss. (Eksempelvis skal flere store næringsbygg ha hurtigladere, noe som kan føre til store inngrep der man må grave opp hele gaten for å oppgradere strømnettet i tilknytningspunktet til kunden.)
- Datasenter.
- Fiskeoppdrettsanlegg.
- Hydrogenfabrikker.
- Økt distribuert produksjon i form av f.eks. solcellepanel på boligtak (plusskunder).

Med unntak av sistnevnte, var disse driverne for nettplanlegging knyttet til utilstrekkelig kapasitet i HS-distribusjonsnettet, ev. noen ganger i overliggende nett. I regionalt distribusjonsnett er driveren oftere gradvis forbruksvekst (aggregert for et større nettområde), i sammenligning med HS-distribusjonsnett der driveren i større grad er enkelttilknytninger av nytt forbruk (enkeltkunder). Andre særlige årsaker som utløser behov for nettplanlegging er utilstrekkelig spenningskvalitet, og da særlig lave spenninger i LS-distribusjonsnett.

2.3.2 Arbeidsprosess for å vurdere behov for nettinvesteringer
Når nettselskap mottar en bestilling på nytt forbruk i et nettområde, må nettselskapet undersøke om det er ledig kapasitet i det aktuelle området. Hvis kapasitetsbehovet (inkl. nytt forbruk) overstiger tilgjengelig nettkapasitet, har nettselskapene i dag flere måter å løse dette på. Hvis det er tidlig i prosessen for aktøren, kan nettselskapet lede
aktøren over til et annet nettområde med ledig kapasitet. En annen tilnærmning er å, sammen med aktøren, kartlegge faktisk kapasitetsbehov for det nye forbruket, for å se om tilkobling kan skje innenfor kapasitetsbegrensningene i det aktuelle nettområdet. Nettelskapet kan også tilby tilknytning på vilkår om redusert forsyning. Hvis de foregående tilnærmingene ikke fører frem, må nettelskapet øke kapasiteten ved å investere i nytt nettanlegg. I disse tilfellene blir aktøren som utløste dette investeringsbehovet, typisk bedt om å betale anleggsbidrag.

Tiltak i nettplanleggingsfasen vurderes med mål om å unngå utfordringer i driftsfasen. Om nytt forbruk vil medføre driftsutfordringer i nettet, vil avhenge av omgivelsene og topologien for nettet hvor nytt forbruk ønskes tilknyttet. Det har også betydning hvilken type forbruk som skal tilknyttes. For eksempel vil elektrifisering av fergen føre til tidvis stort effektbehov i et radielt nett som opprinnelig var dimensjonert for andre formål. Flere nettelskap får mange forespørser om tilknytninger i grispregnet strøk, som for eksempel elbilladere i hyttefelt. Dette kan særlig by på spenningsutfordringer i nettet, men også kapasitetsutfordringer i tilknyttet transformator pga. sammenlægning av last (f.eks. om alle lader elbilen fredag ettermiddag når de kommer til hytta). I flere regioner etableres store mengder elbilladere som følge av elektrifisering av transport. For å unngå utfordringer på grunn av elbilladere, må ofte nettelskapet øke overbelastningsvernet (OBV) og bygge om til trefase.

For å vurdere tilgjengelig kapasitet og behov for tiltak, må nettplanleggere gjøre antakelser om ny last som skal tilknyttes og utvikling i eksisterende last i nettet. Typisk brukes estimerer for historisk makslast og innmeldt makslast for nytt forbruk til å estimere fremtidig last etter ev. tilknytning. Om tilknytning er forsvarlig, vurderes basert på beregninger i nettinformasjonssystemet (NIS, med verktøy for nettanalyse) og en gjennomgang av hvordan ny last vil påvirke andre kunder. Representantene for de ulike nettelskapene beskrev ulik praksis for å vurdere samtidighet og sammenlægningseffekter for nye og eksisterende last. Analyser av lasttidsserier og lastprofiler ble bare brukt i veldig begrenset grad til slike vurderinger. Noen nettelskaper fremhevet verdien til AMS-data for å vurdere faktisk forbruk og belastning i nettet og behov for nettinvesteringer, særlig i LS-distribusjonsnett.

2.3.3 Fleksibilitet som alternativ i nettplanleggingen

I alt hovedsak svarte nettelskapene at de ikke vurderte fleksibilitet som alternative tiltak i nettplanleggingsprosessen. Det kom frem at hvordan respondentene svarte var avhengig av hvordan de forstod begrepet "fleksibilitet". Et par nettelskap brukte UKT aktivt som tiltak ved nye tilknytninger eller for å utsette nettinvesteringer i noen måneder eller år. Ett av dem planla med UKT ved at kunder på slike avtaler ikke ble regnet med i dimensjoningsgrunnlaget. Likevel ble det ikke planlagt for at fleksibilitet skulle spille en mer aktiv rolle i driften av nettet; hovedpoenget syntes å være å sikre tilstrekkelige reserver. Noen respondenter uttrykte at de ikke planla for å drifte nettet nærmere grensene.

Et par respondenter ga også uttrykk for at de vurderte fleksibilitet indirekte gjennom antagelsene de gjør om sammenlægning av last: Ulike kunder har ulik lastprofil med topplast på ulike tidspunkt. Dersom lasten i tillegg antas å være fleksibel slik at den
kan jevnes utover i tid, kan sammenlagringsfaktoren for lasten settes lavere. Dette ble også satt i sammenheng med hvilke sikkerhetsmarginer nettplanleggerne la inn i estimatene for fremtidig last i nettet: Dess mindre marginer som legges inn, jo større risiko tar nettselskapet for underdimensjonering og mulige driftsutfordringer. Det fremkom imidlertid ikke noen systematikk for hvordan nettplanleggere vurderte fleksibilitet i slike nettanalyser.

Tilgjengelig fleksibilitet blir sjelden analysert gjennom lasttidsserier eller profiler for de enkelte (potensielt fleksible) lastene. I de tilfellene det gjøres så vurderes én last av gangen, slik at samspillet og sammenlagringen mellom flere (potensielt fleksible) laster ikke fanges opp i nettanalysen.

Årsakene til at fleksibilitet ikke vurderes i nettplanleggingen var blant annet stor usikkerhet om hvor mye fleksibilitet som faktisk er tilgjengelig hos ulike kunder og hvor fleksibilitetsressursene er lokalisert i nettet. Hvis de vet hvor fleksible ressurser er lokalisert, kan det gjerne være i andre områder enn hvor nettselskapene har behov for fleksibilitet. Usikkerhet og risiko knyttet til tilgjengelig fleksibilitet er en viktig barriere som omtales mer inngående i kap. 3.3.2.
3 Barrierer og muligheter for å ta i bruk fleksibilitet

Dette kapitlet tar opp hva nettselskapene mener er de største barrierene for å utvikle fleksibilitet og hva som skal til for å bedre dette. Det dreier seg blant annet om hvilke typer tekniske systemer som må være på plass for at nettselskapene skal kunne ta i bruk fleksibilitet, og hvilke virkemidler, mekanismer og avtaler som er mest relevante for at fleksibilitet kan tas i bruk som alternativ til nettinvesteringer.

3.1 Hva mener nettselskapene skal til?

Gjennom flere intervjuer ble det nevnt at hvis nettselskapene skal ta i bruk fleksibilitet, vil det kreve en omstilling for nettselskapene i hvordan de planlegger og drifter nettet. Frem til i dag har nettselskapene hovedsakelig håndtert forventet behov for nettkapasitet ved hjelp av investeringer og uten å ta høyde for f.eks. utnyttelse av fleksibilitet i forbruket. Flere respondenter mente det antakelig må en kulturendring til der nettselskapene går fra å bygge nett som er solid nok til å håndtere enhver situasjon, til å se etter alternativer hvor brukerne av nettet (både forbruk og produksjon) bidrar med fleksibilitet. De fleste nettselskapene sier de trenger økt kunnskap og kompetanse om hvordan fleksibilitet tas i bruk og tillit til at fleksibilitetsressursen er tilgjengelig når den skal brukes. Dette gjelder både for planleggere og operatører på driftssentral.

3.2 Nettselskapenes behov for fleksibilitet

Nettutfordringer og drivere for nettinvesteringer er beskrevet i kap. 2.2. Disse danner mye av grunnlaget for å undersøke behovet for fleksibilitet. Hvor behovet oppstår, varierer fra nettselskap til nettselskap. For eksempel er det for mange nettselskap vanskelig å forutse hvor i nettet flaskehalser vil dukke opp. Dette gjør det vanskelig å identifisere hvor det er størst behov for fleksibilitet. I enkelte områder hvor behovet for fleksibilitet har blitt identifisert, korresponderer ikke dette behovet med hvor tilbudet av fleksibilitet er. Dette kan kalles en geografisk barriere for bruk av fleksibilitet. I fremtiden vil utfordringer oppstå på nye steder i nettet, og da kan fleksibilitet være en av løsningene, gitt at fleksible ressurser er tilgjengelig i det aktuelle nettområdet.

For de fleste nettselskapene var det avgjørende å se nytteverdien av fleksibiliteten og vite at de trenger å bruke den til noe. For eksempel er nettet i noen områder veldig godt dimensjonert, kanskje til og med overdimensjonert, og da vil det ikke være noe behov for fleksibilitet i dette området. Videre er det bare et begrenset sett av diskrete kapasitetsnivå nettselskapene har å velge mellom når de dimensjonerer nett. Når nettforsterkinger først gjennomføres i et område, vil det typisk gi så mye ledig kapasitet at det ikke vil være behov for fleksibilitet i området i overskuelig fremtid. Dette var for eksempel tilfelle for et nettselskap der mye nytt (og stort) forbruk skulle etableres ute på lange radialer i det regionale distribusjonsnettet og det måtte uansett investeres i høyere nettkapasitet i disse radialene.

Noen nettselskaper uttrykte at de ofte rett og slett ikke ser behovet for fleksibilitet som kan gjøres tilgjengelig. Dersom det reelt sett ikke er behov for fleksibilitet i et nettområde, så har den mulige fleksibiliteten ingen verdi for nettselskapet og fleksibilitet er i slike tilfeller ikke et aktuelt tiltak. Dersom fleksibiliteten derimot kan ha en verdi, kan det anses som en barriere at nettselskapet ikke ser behovet og verdien.
Nytteverdi kan synliggjøres for nettselskapene ved å sanke erfaringer gjennom pilot-prosjekter, noe som flere av de intervjuede nettselskapene har eller er i ferd med å sette i gang.

Et annet poeng er at fleksibiliteten noen ganger trengs bare i veldig korte tidsperioder. Et eksempel er fergelading, der behovet for aktivering av fleksibilitet er på minuttbasis (når ferge ligger til land og lader, før neste tur over fjorden). Dette er en kortere tidsskala enn de tidsoppløsningene nettselskaper typisk forholder seg til f.eks. i nettanalyser for nettplanleggingsformål eller i tarifering og avregning. Det ble derfor påpekt at rammevilkårene for nettselskapet må fange opp dette behovet og ikke ta utgangspunkt i behovet for kapasitet som en gjennomsnittsverdi per time.

3.3 Nye vurderinger når nettselskap skal ta i bruk fleksibilitet

Som beskrevet i kap. 2, er det flere mulige mekanismer, virkemidler og avtaleformer for å utløse fleksibilitet for nettselskapene. Per i dag er det mest erfaring med UKT som virkemiddel, mens bruk av fleksibilitet gjennom andre mekanismer er mindre modne. Flere av nettselskapene beskrev tilknytning på vilkår som et interessant og potensielt nyttig virkemiddel. Denne avtaleformen vil gjøre det mulig å tilknytte nye kunder raskere og utnytte eksisterende kapasitet i nettet bedre enn i dag.

UKT har vært og er en løsning flere nettselskaper benytter seg av når tilknytning skjer i områder med lav kapasitet eller mangel på reserver. I enkelte tilfeller kan man risikere "gratispassasjerer" i den forstand at dersom det kommer en ny kunde som betaler anleggsbidrag for bedre leveringspålitelighet i området vil kunden som allerede ble tilknyttet på UKT få bedre leveringspålitelighet, men fremdeles nyte godt av lavere tariff. Tilsvarende kan en kunde som tilknyttes på vilkår i et område bli "gratispassasjer" dersom nye kunder i samme området gjør det nødvendig med nettforsterkning og anleggsbidrag som den første kunden slipper unna.

3.3.1 Om markedsløsninger

Når det gjelder markeds潸 løsninger, regner nettselskapene med at tydeligere prissignaler vil bidra til at både næringskunder og husholdningskunder vil se gevinsten av å selge fleksibilitet. For husholdningskunder peker de fleste nettselskapene på aggregatorer som den mest sannsynlige muligheten, mens de antar at større næringskunder vil kunne delta direkte med fleksibilitets bud inn i et marked.

Noen av nettselskapene har et inntrykk av at mye tid har blitt bruk på å prate om fleksibilitetsmarked uten at man kommer i gang med å faktisk ta i bruk fleksibilitet. Blant virkemidlene for å utløse fleksibilitet, har flere av nettselskapene uttrykt at fleksibilitetsmarkeder vil være den løsningen som vil komme på plass til slutt og at de andre løsningene er mer aktuelle å ta i bruk i nærmeste fremtid.

Når det kommer til avtaler, kan disse være forskjellig fra kunde til kunde, særlig når det gjelder bilaterale avtaler. Denne praksisen kan bli problematisk når krav om nøytralitet og ikke-diskriminering skal tas høyde for i områder med mer enn en
tilbyder av fleksibilitet. I et fleksibilitetsmarked kan omsetting av fleksibilitet gjøres på en transparent måte, ved at f.eks. aktiveringspris og -volum gjøres tilgjengelig21.

3.3.2 Vurdering av risiko

Fleksibilitet introduserer nye usikkerheter og risikofaktorer som må belyses når nettselskapene vurderer å ta i bruk løsningene. Den følgende listen over spørsmål gir en forenklet oppsummering av risikofaktorene som nettselskapene trakk frem:

- Vil fleksibilitetsressursen være tilgjengelig når det trengs?
- Hvor stort fleksibilitetsvolum er reelt tilgjengelig eller blir faktisk aktivert?
- Er teknologien og systemene pålitelige og fungerer de som det skal?
- Responderer fleksibilitetsressursen hurtig nok etter aktivering?
- Kan vi få flere uplanlagte avbrudd og økte KILE-kostnader?
- Hvilken forutsigbarhet har vi for tilgjengeligheten til fleksibilitet de neste årene eller tiårene?

Det er viktig at de som skal benytte fleksibiliteten, vet at teknologien fungerer og at den fleksible ressursen faktisk responderer når den aktiveres. Det er også viktig å ta hensyn til at den reelle tilgjengelige fleksibiliteten i flere tilfeller har vist seg å bare være en brøkdel av det teoretiske potensialet. Det er dermed viktig å kartlegge hvor stor effekt de ulike ressursene reelt kan tilby, i hvilken periode kan det tilbys, hvilket volum kan man forvente i de ulike periodene, osv. En annen viktig egenskap er responstiden for aktivering, altså er den momentan eller er det behov for lengre varslingstid. Det må avklares presis hva som gjelder for den aktuelle ressursen.

Om det fleksible forbruket ikke er til stede eller tilknyttet, kan dette være en egen risikofaktor. Et eksempel er om driften av et nettområde gjøres avhengig av smart styring av elbillading og en får en periode med mye last fra andre kunder men få elbiler som er tilkoblet ladere.

Om fleksibelt forbruk er tilknyttet eller ikke, vil imidlertid bare være relevant dersom fleksibelt forbruk bidrar til å løse utfordringer i nettet som i hovedsak er skapt av andre. Dette kan illustreres med et eksempel med en større strømkunde på utkobblbar tariff (UKT) som er tilknyttet et HS-distribusjonsnett som kan ha utilstrekkelige reserver. Når denne kunden ikke har noe forbruk vil det typisk heller ikke være kapasitetsutfordringer i nettet og dermed ikke behov for at fleksibiliteten er tilgjengelig.

Flere av risikofaktorene som ble nevnt, kan resultere i en økt risiko for KILE. Opplevd risiko for KILE virker til å utgjøre en vesentlig barriere mot å ta i bruk fleksibilitets-løsninger. Dette omtales også under avsnittet om regulatoriske barrierer.

Et nettselskap beskrev individuelle KILE-avtaler med kunder som en form for fleksibilitetsløsning for nettopp å redusere nettselskapets KILE-risiko. Med andre ord: nettselskapet overfører noe risiko til kunden dersom den aksepterer en slik avtale. I tilfeller der kunden sier opp avtalen, så er dette et uttrykk for at kunden ønsker bedre

21 Eksempler på markedsbasert omsetting av fleksibilitet er vist her: https://nodesmarket.com/shortflex-average-price-history/
leveringskvalitet. For dette nettselskapet var avtalen utformet slik at kunden da blir nødt til å betale anleggsbidrag.

3.4 Nettselskapenes krav til fleksibilitet

I intervjueene ble det pekt på følgende krav til fleksibilitetsløsninger:

- Tjenesten må ha sikker respons når den aktiveres.
- Fleksibiliteten må leveres innenfor avtalt responstid.
- Fleksibiliteten må kunne leveres de delene av året det er behov for den.
- Fleksibilitetsressursen må også være forutsigbart flere år frem i tid, hvis den skal kunne tas hensyn til i planlegging av nettet.
- Man må ha nok (ekstra) fleksibilitetsvolum i porteføljen før fleksibilitetsressursene kan stoles på fra et nettplanleggingsperspektiv.
- Tilgjengelig fleksibilitet må kunne identifiseres og anskaffes relativt raskt.

Dette er egenskaper som nettselskapene ser etter for å kunne ha tiltro til løsningene og for at risikoen for å ta i bruk fleksibilitet skal være akseptabel.

Når et behov oppstår, er det ofte at problemet må løses raskt. For eksempel kan det høste med å tilknytte en ny kunde, eller at nettselskapet har fått spenningsklager som må håndteres uten ugrunnet opphold. Da har ikke nettselskapene tid til langvarige utredninger og å kartlegge området, eller finne nye løsninger. Når det er behov for store nettinvesteringer på høyere spenningsnivå, tar nettinvesteringer mye tid, og hvis fleksibilitet skal brukes som et alternativ, trengs det ganske mye fleksibilitet. På lavere nettlinjefrekvens må den rekommenderte sannsynligheten være forutenfor det å høyde for usikkerhet i fremtidig behov. Når bidraget fra fleksibilitet er mindre enn sikkerhetsmarginene så må en trolig utsette investeringen i nevneverdig grad.

Det tar også lang tid å bygge opp en portefølje på fleksibel last som kan brukes. Dette kan ta mange år – avhengig av spenningsnivå og region.

Å anskaffe et tilstrekkelig fleksibilitetsvolum som monner, ble også trukket frem som en utfordring. For større nettinvesteringer er kapasitetsørkningen det planlegges for, typisk så stor at realistisk tilgjengelig fleksibilitetsvolum kan bli forsvinnende lite i sammenheng. Det legges inn sikkerhetsmarginer i planleggingen bl.a. for å ta høyde for usikkerhet i fremtidig behov. Når bidraget fra fleksibilitet er mindre enn sikkerhetsmarginene så må en trolig uansett investere i nett og kan heller ikke utsette investeringen i nevneverdig grad.

Videre så trenger nettplanleggerne forutsigbarhet ved langsiktig planlegging av nettet, og at ressursen ikke f.eks. blir utilgjengelig etter fem år. En respondent uttrykte at det ikke går an å planlegge 30 år frem i tid med fleksibilitet.

Nettplanleggere må kreve sikkerhetsmarginer i fleksibilitetsvolumet som anskaffes. Med andre ord, volumet må være større enn faktisk behov, fordi tilgjengeligheten og responsen til den enkelte fleksibilitetsressurs ikke er sikker. En mulighet for å håndtere noe av risikoen knyttet til uforutsigbarhet i tilgjengelighet kan være.

fleksibilitetsprodukter som spesifiserer et visst fleksibilitetsvolum som fleksibilitetsstilbyder skal ha tilgjengelig i fremtiden23.

3.5 Kultur og arbeidsprosesser hos nettselskapene

Det er flere barrierer mot å ta i bruk fleksibilitet sett fra både fra et netplanleggings- og fra et driftsperspektiv. Flere av disse synes å være knyttet til kultur og arbeidsprosesser.

Overordnet sett kan de ses i sammenheng med at arbeidsprosesser og tankesett i nettselskapene er tilpasset tradisjonelle nettinvesteringer med høy forutsigbarhet. Muligheten for fleksibilitetstiltak er ikke noe netplanleggerne har vært vant til å forholde seg til, og det forutsetter en helt annen måte å tenke og arbeide på.

Fra et driftsperspektiv kan det virke som fleksibilitet kunne passet inn i de eksisterende arbeidsprosessene. Dersom det hadde vært tilgjengelig, ville aktivering av fleksibilitet bare vært et "enda et verktøy i verktøykassen" som nettselskapet har for å håndtere utfordringer i driften av nettet. På samme tid beskrev en respondent driftsorganisasjonen som veldig komfortabel med dagens nett der det er kapasitet til de fleste situasjoner og ikke behov for aktiv bruk av fleksibilitet i driften.

Ett nettselskap uttrykte at netplanleggerne deres aldri planlegger med fleksibilitet. I den grad de har tilgjengelige fleksibilitetsressurser, så er disse bare betraktet som reserve for å kunne håndtere veldig sjeldne feil. Dermed havner de praktisk talt aldri i situasjoner hvor de har behov for å bruke fleksibilitetsressurserne som reserver, og fleksibilitetsressurserne blir dermed utelatt og noe som driftsoperatørene ikke har en aktiv rutine for å bruke. Organisasjonen får da ikke bevissthet og erfaring om bruk av fleksibilitet, og fortsetter å bygge et nett som ikke er avhengig av disse fleksibilitetsreservene.

Relaterte og mer spesifikke barrierer knyttet til arbeidsprosesser og kultur inkluderer:

- Nettplanleggere har ikke innarbeidede prosesser for å vurdere fleksibilitet som tiltak, og når de gjør det så vet de gjerne ikke hvor fleksibilitetsressurserne er tilknyttet nettet. Dette har både sammenheng med at de nødvendige systemene ikke er på plass (jf. kap. 3.9) og at fleksibilitet i praksis aldri blir aktivert (jf. eksempel ovenfor).
- Nettplanleggere er gjerne ikke villige til å ta risikoen ved å anta at tilstrekkelig fleksibilitet vil være tilgjengelig i den driftstimen det blir behov for det. Det er mindre risikabelt og oppfattes som mer komfortabelt å planlegge for ekstra kapasitet og reserver i stedet. De trenger derfor å utvikle tillit til å drifte nettet med en annen risiko.
- Det er gjort flere erfaringer der det ble mye støy rundt UKT, noe som har påvirket enkeltes holdning til fleksibilitet i negativ retning.
- Det ble også uttrykt skepsis om å være førstemann ut når det gjelder å ta i bruk nye fleksibilitetsløsninger.

23 Et eksempel på et produkt som er ment å ha et slik formål er beskrevet på https://nodesmarket.com/longflex/.
Noen nettselskaper antydet også en generell skepsis mot fleksibilitetsløsninger i deler av organisasjonen. Et nettselskap kunne fortelle at de for ti år siden hadde UKT, men at det ble mye støy fra kundene ved aktivering, noe som gjør at driftssentral har litt dårlig erfaring med dette. Mye har skjedd på ti år teknologisk sett og avtalemessig, så det er nå mer fokus på potensiell bruk av fleksibilitet og at fleksibilitet skal tas i bruk slik at det kan gi dem gevinster.

Det ble påpekt at barrierer knyttet til kultur og arbeidsprosesser ofte henger sammen med manglende kompetanse, som behandles i neste delkapittel.

3.6 Kompetanse hos nettselskapene

Bruk av fleksibilitet er avhengig av kompetansen innad i nettselskapene, og flere av nettselskapene refererer til dette som en slags høna-og-egget-problematikk. Eksempelvis, på den ene siden mangler de systemer som kan hjelpe dem å ta i bruk fleksibilitet, mens på den andre siden mangler de erfaring og kunnskap om hvilke systemer de trenger for å utløse fleksibilitet.

Mangel på kompetanse og tid til å gjennomføre kartlegging av potensiell fleksibilitet og å vite hvilke ressurser de kan se etter, ser også ut til å være en hindring for de fleste nettselskapene. Det nevnes for eksempel at de som driver med nettplanlegging drar ikke rundt og snakker med kunder.

Flere av nettselskapene opplyser at de ikke kjenner lastene og energiprosessene til nettkundene tilstrekkelig, slik at de ikke får kartlagt den potensielle fleksibiliteten som er hos kundene. Dette gjaldt i særlig grad industrielle prosesser.

Hos de mindre nettselskapene har kunnskap omkring teknologi blitt nevnt som viktigste barriere. Dette kan sees i lys av at fleksibilitetsressurser hos mindre kunder og i LS-distribusjonsnett har vært fraværende og at disse nettene historisk sett har vært godt dimensjonerte. Med etablering av distribuert produksjon og nytt forbruk med høyere effektuttak, vil også utviklingen av nettene i lavere spenningsnivå kunne dra fordel av å utnytte fleksibilitet.

For de større nettselskapene kan det føre til store omstruktureringer å inkludere alternative tiltak i nettplanleggingen. Der nettplanleggerne vanligvis har forholdt seg til eget fagmiljø, er det behov for at de ved å planlegge for fleksible ressurser, kommuniserer mer med andre fagmiljøer internt hos nettselskapet, som for eksempel driftssentral og avregning.

For at fleksibilitet skal vurderes på en planmessig systematisk måte, må nettselskapet ta et aktivt valg om å gjøre det, ellers "blir det gjort slik som det alltid har blitt gjort". Det kan være tungvint å utføre full kost-nytte-analyse for hvert fleksibilitetstiltak, noe som kan gjøre det mindre aktuelt å ta i bruk fleksibilitet. Selv om man ser behovet for tiltakene, kan det være vanskelig å iverksette de. Tidsbruk er som regel en hemmende faktor for umodne løsninger. Nettselskapene har behov for noe fra verktøykassen som kan "tas opp" veldig raskt når det trengs.
3.7 Modenhet på kundesiden

Nettselskapene møter flere utfordringer på kundesiden. Et generelt inntrykk nettselskapene hadde, var at kundene har lav kunnskap om eget forbruk og hva fleksibilitet kan innebære. Det rapporteres at de fleste næringskundene heller ikke har god oversikt over egne interne prosesser, oppvarmingsbehov og hva det betyr for lastprofil og strømforbruk. Dette resulterer i at mange kunder ikke vet hvilken fleksibilitet de kan tilby til nettselskapet eller i et fleksibilitetsmarked. De må da undersøke eget forbruk og se hva de trenger og hva som kan kobles ut. For noen kunder er det først under diskusjon om anleggsbidrag at de blir kjent med konseptet fleksibilitet og gjort oppmerksom på at det kan være nyttig for nettet hvis de ha et fleksibelt forbruk.

Nettselskapene må bli bedre på å synliggjøre langsiktige kostnader overfor nye kunder - ikke bare anleggsbidrag, men også nettleie. For eksempel kan det koste like mye i anleggsbidrag (engangsbetaling), som i årlig nettleie (kr/år).

Det mangler i mange tilfeller en modenhet hos kunden. For eksempel er det flere kunder som ønsker lavere nettleie ved UKT, men som ikke ønsker å bli koblet ut. Noen kunder har også overdreven forventning til hvilke priser de kan få ved å tilby fleksibilitetsstjenester og hva nettselskapene kan være interessert i å anskaffe.

En annen utfordring er å få eksisterende kunder over på fleksible avtaler. De har allerede fått tilgang til strømforsyning så hvorfor skal de gjøre tiltak eller ingå avtale om utkobling eller redusert forsyning i perioder? I dette tilfellet handler det om at insentivene til å være fleksibel må være på plass.

For å modne kundesiden mer, trenger kundene mer informasjon og økonomiske insentiver for at de skal tilby fleksibilitet. Som med de fleste løsningene som har blitt diskutert, bør også disse løsningene være automatiserte. Særlig for problemstillinger lengre ned i nettet (og dermed flere og mindre laster) trengs det mer automatikk for at nettselskapene skal kunne ta i bruk fleksibilitet på en hensiktsmessig måte.

3.8 Aggregator-rollen

For at batterier hos strømkunder skal kunne tilgjengeliggjøres for nettselskapene som fleksibilitetsressurser, mener de fleste nettselskapene at dette bør gjøres gjennom en tredjeparts aggregator-rolle. For å få til det, trengs løsninger som kan håndtere betingelsene i avtaleverket og kommunikasjonen mellom aktørene.

Noen respondenter antydet også at aggregatorer kunne hjelpe nettselskapene med å forutse og identifisere netttutfordringer og behov for fleksibilitet i tilordnede nettområder. Mulige aggregatorer kunne da aktivere fleksibilitet f.eks. når en lastgrense er oversteget i stedet for at nettselskapet aktivt måtte bruke markedsbasert fleksibilitetsaktivering.

3.9 Nettselskapenes krav til systemløsninger
Alle selskapene som deltok i kartleggingen, pekte på IKT-løsninger, eller mangel på slike, som en av de viktigste barrierene mot å ta i bruk fleksibilitet i nettplanlegging og drift. For at driften skal kunne aktivt ta i bruk fleksibilitet, trengs en oversikt i driftssentralen over hvor i nettet fleksibilitetsressurser er lokalisiert, hvor mye som er tilgjengelig og hva som er ulike kilder til fleksibilitet. Tilsvarende som driftsoperatører i dag har oversikt over tilgjengelige omkoblingsmuligheter, vil det være nyttig for driftsoperatørene å ha oversikt over hvilke fleksibilitetsressurser man har tilgjengelig når i nettet.

Grad av observerbarhet i eget nett varierer mellom nettnivå. I det regionale distribusjonsnettet er det sanntidsovervåking i de fleste transformatorstasjonene, men i HS-distribusjonsnett oppgir de fleste at de mangler god nok sanntidsovervåking til å oppdage kapasitetsutfordringer og flaskehalser. I LS-distribusjonsnett har nettselskapene mulighet til å benytte seg av tilstandsrapporter fra AMS-målere for å oppdage avbrudd.

Flere nettselskaper uttrykte også et behov for å få bedre oversikt over hvilke netttutfordringer som oppstår. Disse må kartlegges slik at nettselskapene vet hvor de er, hvor de kan dukke opp om noen år og hvordan de kan matches til tilgjengelige eller potensielle fleksibilitetsressurser. Når dette er på plass, blir neste steg å etablere en plattform for å ta i bruk fleksibiliteten. Denne plattformen er nødvendig for at driftsoperatørene ikke skal være nødt til selv å holde oversikt over ulike vilkår for fleksibilitet, og vil gjøre det mulig å håndtere et stort antall kunder samtidig. Dette må være et integrert system som baserer seg på automatikk som kobles opp mot andre systemer, som for eksempel kundesystemer og avregningssystemer.

Andre systemer som må være på plass, er systemer for ut- og innkobling av kunden (for eksempel i et lokalt fleksibilitetsmarked), og systemer for håndtering av avtaler som bestemmer hvilke utkoblingskriterier som gjelder for hvilke kunder. Flere av løsningene avhenger av at systemet er installert både hos kunde, men også hos en tredjepart som for eksempel en aggregator. På ett av intervjuene ble det foreslått at systemene for å håndtere avtalene burde være "smarte" og ikke bare basere seg på faste lastgrenser som man agerer etter.

Flere nettselskaper uttrykte også behov for planleggingsverktøy som hensyrer fleksibilitet. Når slike systemer for nettdrift er på plass som beskrevet ovenfor, kan det også være mer aktuelt å inkludere fleksibilitetstiltak som en del av nettplanleggingen. En respondent forklarte at et slik planleggingsverktøy bør gjøre det mulig for planleggere å vurdere risiko for bruk av fleksibilitet i ulike case og dermed vurdere hvilke caser hvor fleksibilitet kan benyttes.
3.10 Behov for standardavtaler
Det er behov for tilpassede avtaler grunnet ulike behov hos kunden og ulike egenskaper ved nettet. Noen kunder kan være utkoblet lengre enn andre, noen trenger lengre varslingstid før utkobling, noen kan bare være utkoblet i vinterhalvåret osv. I tillegg kommer det også an på hvilke nettutfordringer som skal løses og når og hvor i nettet en ny tilknytning skaper nettutfordringer. Enkelte områder har for eksempel mest spenningsproblemer om sommeren, og tilknytning av en ny kunde på lavere nettinnivå kan skape kapasitetsutfordringer høyere opp i nettet. Til tross for ulike kunder og nettutfordringer, er det gode grunner til tett samordning i bransjen. For eksempel ved å utvikle gjenbruikbare standardavtaler for tilknytning og fleksibilitet. Standardavtaler vil også være fordel for bedrifter med flere tilknytningspunkter i nettet.

Flere nettselskap trakk frem tilknytning på vilkår som en type avtale som vil kunne ha stor betydning for nettselskapenes tilgang på fleksibilitet. Denne løsningen ble først tilgjengelig i april 2021 (etter at intervjuene var gjennomført), og derfor er det liten eller ingen erfaringer med denne avtaleformen enda. Vilkårene for utkobling skal være knyttet til det aktuelle tilknytningspunktet. Dersom avtale om tilknytning på vilkår blir veldig spesialisert, for eksempel veldig avhengige av spesifike, lokale forhold, mener flere nettselskap at det kan bli utfordrende å utarbeide standardavtaler. Det blir dessuten utfordrende å regne på alle kombinasjonene av situasjoner og vilkår for å prissette avtalen.

Avtaleverket må oppfylle krav fra myndighetene og gjøre at ev. frister for informasjon til systemansvarlig kan overholdes. I tillegg trakk noen av respondentene fram at krav i avtalen ikke må være til hinder for at kunden kan delta i for eksempel lokale fleksibilitetsmarkeder.

3.11 Regulatoriske barrierer
I diskusjonen om det var regulatoriske barrierer mot å ta i bruk fleksibilitet, ble særlig inntektsrammereguleringen trukket frem. Mens nettselskapene har sterke insentiver til å investere i nett, har de insentiver til å holde driftskostnadene lave. Netttselskapene sin inntektsrammene blir redusert påfølgende år dersom driftskostnadene øker (f.eks. på grunn av kjøp av fleksibilitet), mens det å bygge nett øker nettselskapenes (økonomiske) oppgaver som målt i inntektsrammereguleringen. Med investeringer får nettselskapet dermed økt inntektsrammen, mens høye driftskostnader reduserer selskapets effektivitet og dermed tillatte inntekt. Spørsmålet er om rammevilkårene for nettselskap slik de er i dag, muliggjør utstrakt bruk av fleksibilitet da kostnader knyttet til anskaffelse av fleksibilitetstjenester føres som rene driftskostnader.

Andre faktorer som kan være med på å påvirke bruk eller etablering av fleksibilitetstjenester, er kriterier for anbud satt av ekstern part som fører til at akterører som ber om annen type avtale enn den som er spesifisert i konkurranseunderlaget blir utelatt. For eksempel hadde en fylkeskommune ute et anbud om drift av fergeposter og satte som et av kriteriene i anbudet at det skulle inngås individuelle KILE-avtaler. Dette resulterte i at ett av fergekapene som hadde bedt om UKT, ikke ble vurdert.
Sterke insentiver til å unngå avbrudd gjennom høye KILE-kostnader gjør at nettselskapene typisk er risikoaverse når det gjelder å ta i bruk nye virkemidler som for eksempel fleksibilitet.

Flere nettselskap uttalte at de gjerne selv skulle hatt mulighet til å eie batterier fordi det ville vært nyttig i driften å ha direkte tilgang på egen fleksibilitet. Nøytralitetskravet i reguleringen tiliser imidlertid at nettselskap ikke skal ta del i konkurranseutsatt virksomhet, og batterier kan i utgangspunktet eies og driftes av kommersielle aktører. Unntaket er hvis det er fullt integrerte nettvirksomhetskomponenter som regulatoriske myndigheter har gitt godkjenning til24.

Følgende barrierer ble også nevnt:

- Enkelte nettselskap ga uttrykk for at de hadde fått redusert handlingsrommet for å selv bruke og styre fleksibilitetsressurser. For eksempel hadde et nettselskap en test på tidlig 2000-tall med å styre varmtvannstanker. I dag har de som nettselskap ikke denne muligheten, men må sette ut dette til tredjepart.
- Noen nettselskap har styrevekt der det kun er store kunder over 1 MW som kan inngå avtaler om å tilby fleksibilitet.
- Driftskoordineringen mellom nettselskap og Statnett har i enkelte tilfeller vært utfordrende. Noen nettselskaper som eier regionalt distribusjonsnett, peker på at Statnett som systemansvarlig har ansvar for flaskehalshandteringen i regionalt distribusjonsnett. Det pekes videre på at dagens systemdrifts-organisering øker terskelen for å planmessig benytte fleksibilitet som alternativ til investeringer i regionalt distribusjonsnett fordi det er tungvint å iverksette tiltak som kan bedre driftsutfordringer. Det er ikke nødvendigvis sammenfall mellom insentiver (den som ser kostnadene) og ansvaret (den som velger og utfører tiltaket).

24 For mer informasjon om bruksområder og regulatoriske barrierer for batterier i norske distribusjonsnett:

4 Bruk av fleksibilitet fremover i drift og planlegging av distribusjonsnettet

I dette kapitlet presenteres nettselskapenes forventninger frem mot 2030/40 med tanke på bruk av fleksibilitet i drift og planlegging av nettet.

4.1 Til hvilke formål kan fleksibiliteten benyttes?

Forenklet oppsummert virker den mest nærliggende bruken av fleksibilitet til å være å sørge for reservekapasitet/redundans i nettet i tilfelle feil og utfall. (Se også oversikten over nettutfordringer i kap. Feil! Fant ikke referansekilden.) Generelt er tilfellene der fleksibilitet kan brukes for å unngå eller utsette nettinvesteringer, tilfeller der det er den potensielt fleksible kunden som utløser behovet. Utover dette avdekket ikke undersøkelsen klare og entydige formninger hos nettselskapene om hvilke karakteristiker til fleksibilitetsbehovet (volum, hyppighet, varighet, osv.) som ville gjøre fleksibilitet til et egnet og kostnadseffektivt tiltak.

Det er hensiktsmessig å skille mellom problemstillinger som utløses av netttilknytning og andre problemstillinger. For eksempel er tilknytning på vilkår aktuelt å vurdere ved tilknytning av en ny, større kunde dersom ordinær tilknytning ville utløst behov for investeringer i nettet. Dette gjelder uavhengig av hvilke typer nettutfordringer det er som ville utløste behovet. Dersom omfanget av elbiler skaper utfordringer og gir behov for nettinvestering, for å gi et annet eksempel, så kan styring av tidspunkt for og effektuttak ved elbillading være en del av løsningen.

Mer spesifikt ble følgende vurderinger av hvilke formål ulike fleksibilitetsressurser kan benyttes til, nevnt av nettselskapene:

- For å sikre tilstrekkelige reserver og redundans i nettet, må det være kunder med alternative energikilder, dvs. egne reserver, siden det kan være snakk om langvarige utfall og ikke bare lastflytting, f.eks. noen timer. Dette begrenser kundemassen til for eksempel hybrid- og elferger, datasentre, elkjeler, osv.
- For andre kapasitetsutfordringer og å jevne ut topper for å unngå å investere så mye i nett, vil være mest aktuelt med fleksibilitet fra større forbrukskunder, som kjøpesenter, kjølelagre og annen næring.
- Flaskehalshåndtering ble forventet å være mest relevant i HS-distribusjonsnettet så lenge Statnett er ansvarlig for flaskehalshåndtering i regionalt distribusjonsnett, (men flere påpekte mulighet for en annen arbeidsdeling her).
- For å håndtere spenningsutfordringer i lange radialer i LS-distribusjonsnettet, har flere nettselskap pekt på batterier som en mulig ressurs til dette.
- For mer lokale problemer i LS-distribusjonsnettet, blir varmtvannstanker sett på som en hensiktsmessig ressurs som kan benyttes.

Flere av nettselskapene mente at det ikke er hensiktsmessig å øremerke fleksibilitetskilder til spesielle formål. Tvert imot kan en slik øremerking være en barriere for utvikling av markedsløsninger fordi det da ville bli mange "spesialprodukter" og dermed begrenset volum bak hvert produkt. Nettselskapene pekte på at fleksibilitet (uavhengig av fleksibilitetsressurs) kan brukes til flere formål i nettet. En slik åpen håndtering av fleksibilitet vil forenkle utvikling av et marked fordi
Det blir et mindre antall standardprodukter å forholde seg til og mulighet for større likviditet i markedet.

Oppsummert er det behov for flere ulike løsninger for å øke bruken av fleksibilitet. Nettsselskapene trenger alle løsningene, for å utnytte nettet mest mulig effektivt, siden de ulike løsningene utfyller hverandre mer enn å utkonkurrere med hverandre, ved å berøre forskjellige områder og problematikker. Det neste delkapittelet går nærmere inn på hvilke muliggjørende insentiver som kan være egnet for hvilke tilfeller.

4.2 Aktuelle avtaleformer og muliggjørende insentiver

Når det gjelder ulike typer avtalere og insentiver for å muliggjøre fleksibilitet, gjorde ulike erfaringer at nettsselskapene vektla forskjellige ting. Ett nettselskap med utstrakt bruk av UKT i dag, trakk særlig fram UKT som det mest formålstjenlige virkemiddet, også frem til 2030. Andre mente derimot at det er få kunder som tåler å være utkoblet over en lengre periode, og at det derfor antakelig var lite potensial for å bruke denne avtaleformen fremover. De mente også at det er krevende for nettselskapet å beregne kost-nytte av å ha en kunde på en UKT-avtale, og dermed krevende å prissette denne avtalen.

Flere av nettsselskapene hadde stor tro på tilknytning på vilkår som et virkemiddel de neste årene. En av årsaken til dette er den reduserte risikoen nettsselskapene tar på seg ved tilknytning av nytt forbruk som går inn på en slik tilknytningsavtale. Ved å vurdere tilknytning på vilkår, oppfordres dessuten kunden til å tenke gjennom faktiske behov for kapasitet og om deler av forbruket kan være fleksibelt. Utkoblings tariff og tilknytning på vilkår er i utgangspunktet mest tenkt for å sikre tilstrekkelig redundans i nettet og det kan bidra til å utsette investeringer og/eller tilknytte nytt forbruk før nettforsterkning er mulig. Dette innebærer at nettet kan dimensjoneres lavere, siden kunder på slike avtaler ikke trengs tas med i dimensjoneringsgrunnlaget. Fra kundens perspektiv gir det muligheten til å kunne bli tilknyttet raskere og ev. uten anleggsbidrag.

En annen fordel med tilknytning på vilkår som kom frem i intervjuene, var at det kan fungere som en katalysator for mer fleksibilitet: Det bidrar til at både kunder og nettsselskaper bygger erfaring med bruk av fleksibilitet og dermed at det blir enklere å ta i bruk fleksibilitet gjennom andre virkemidler senere.

Bilaterale avtaler og lokale fleksibilitetsmarkeder var virkemidler som for de fleste nettsselskapene fremstod å ligge lenger frem i tid, men begge disse virkemidlene kan utfylle tilknytning på vilkår.

Alle selskapene pekte på tariffer (implisitt fleksibilitet), særlig for husholdningskunder, som en løsning for å flytte forbruk bort fra topplast-timen. Et gjentagende poeng i den forbindelse var at det var avgjørende at prissignalet var tydelig for å gi tilstrekkelig insentiv til kunde om å tilby fleksibilitet. Et tydelig prissignal ville også være nødvendig for å gi insentiver til å installere i batterier eller på andre måter øke fleksibilitetspotensialet. Flere nettsselskaper stilte imidlertid spørsmål om insentiveve blir sterke nok og hvor mye kunden må spare for å være villig til å flytte forbruk.

Elbillading var den typen last som ble forventet å ha størst potensial for å kunne flyttes gjennom prissignaler.
Det ble også påpekt at prissignal alene antakelig ikke ville være tilstrekkelig og at informasjon vil være et veldig viktig supplement til prissignalene. Et eksempel nevnt av et nettselskap, var informasjon om hvordan kunden kan avhjelpe nettet.

Et nettselskap trekker frem effektdeling mellom to aktører som en mulighet. Det vil si at to kunder med ulik lastprofil kan tilknyttes samme avgang i en transformator. For eksempel kan en bussterminal med effektuttak på natten kombineres med en virksomhet som har effektuttak på dagtid. Tilknytningspunktet ute i nettet og trafo kan da dimensjoneres lavere enn om nettselskapet måtte tatt høyde for samtidig makslast fra begge.

Tabellen nedenfor viser en oppsummering av muliggjørende insentiver nettselskapene ser for seg vil ha betydning i fremtiden, kartlagt til hvilke utfordringer de kan løse, for hvilke fleksibilitetsressurser de er aktuelle og hva som må være på plass for at disse kan tas i bruk.
Tabell 5: Oppsummering av virkemidler kartlagt til formål og fleksibilitetsressurser, samt hva som må være på plass for at disse kan tas i bruk.

<table>
<thead>
<tr>
<th>Insentiver</th>
<th>Formål</th>
<th>Fleksibilitetsressurser</th>
<th>Hva som må være på plass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tariffer</td>
<td>Redusere topplast</td>
<td>Husholdnings-kunder (ebil-lading, varmt-vannstank, annet forbruk i hjemmet)</td>
<td>Standardavtaler – lik tariff til alle kunder innen en gruppering (f.eks. husholdning)</td>
</tr>
<tr>
<td></td>
<td>Redusere kapasitets-utfordringer og spennings-utfordringer</td>
<td></td>
<td>Transparent involvering av kunden</td>
</tr>
<tr>
<td>UKT</td>
<td>Sikre reserver i nettet</td>
<td>Industri</td>
<td>Er i bruk hos flere nettselskap</td>
</tr>
<tr>
<td></td>
<td>Raskere nett-tilknytning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mulig "introduksjonsordning" til fleksibilitet</td>
<td>Industri</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Næringskunder</td>
<td></td>
</tr>
<tr>
<td>Tilknytning på vilkår</td>
<td>Sikre reserver i nettet</td>
<td>Avdekke faktisk kapasitetsbehov hos kunde</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raskere nett-tilknytning</td>
<td></td>
<td>Standardavtaler</td>
</tr>
<tr>
<td></td>
<td>Mulig "introduksjonsordning" til fleksibilitet</td>
<td></td>
<td>Systemløsninger for automatisk aktivering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industri</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Næringskunder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kunder med egne reserver</td>
<td></td>
</tr>
<tr>
<td>Bilaterale avtaler</td>
<td>Ved få tilbydere og/eller behov for langsiktig sikkerhet</td>
<td>Industri</td>
<td>Standardavtaler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Næringskunder</td>
<td>Systemløsninger for automatisk aktivering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleksibilitetsmarked</td>
<td>Løse kapasitets-problematikk i stort volum</td>
<td>Industri</td>
<td>Markedsplattform</td>
</tr>
<tr>
<td></td>
<td>Forutsigbare spennings-utfordringer</td>
<td>Næringskunder</td>
<td>Markedsløsninger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spilleregler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kommunikasjons-kanaler for automatisk aktivering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aggregator (tredjepart)</td>
</tr>
</tbody>
</table>

4.3 Utvikling frem mot 2030/2040

Nettselskapene så muligheter for betydelig økt tilgang på fleksibilitet de neste årene fra batterier, produksjon og ikke minst forbruk. Særlig forventer flere en økt bevissthet og mer aktiv deltakelse fra forbrukssiden de neste tiårene. De legger til grunn at forbrukskundene vil ha økt kunnskap og være mer bevisste om eget forbruk og dermed også mer villige til å tilby fleksibilitet. Dette er særlig tilfellet når insentiver og forretningsmodeller er mer avklart.
Oppsummert forventet nettselskapene følgende frem mot 2030/2040:

- For husholdningssegmentet peker nettselskapene på varmtvansberedere og elbiler som viktige fleksibilitetskilder. Særlig trekkes muligheten til å flytte forbruk fra høylast- til lavlastperioder frem.

- Nye næringsvirksomheter bygges i økende grad med alternative energikilder eller med mulighet for fleksibilitet, slik at virksomheten kan flytte forbruk mellom produksjonsprosesser internt i bedriften. Eksempler som nettselskapene trekker frem, er elektriske ferger med batteri i ferga, datasenter, og oppdrettsanlegg. (Disse eksemplene ble også trukket fram som potensielle fleksibilitetsressurser i dag eller på kortere sikt enn 2030/2040.)

- Alle nettselskapene tror at batterier hos nettkunder vil være mer utbredt i fremtiden, både i form av store batterier til næring og mindre til husholdninger. Det ble vist til en betydelig utvikling i batteriteknologi de senere årene, hvor det har vært en økning i kapasitet og samtidig en reduksjon i pris. Flere av nettselskapene peker på at fleksibilitet fra batteri kan gå begge veier, altså både mate inn effekt og hente ut effekt fra strømnettet.

- Flere nettselskap forventet betydelig større potensial fra solkraftproduksjon i kombinasjon med batteri (plusskunder). Batteri i kombinasjon med vindkraftproduksjon ble ikke trukket frem i samme grad.

- Kombinasjonen av strøm fra solceller og batteri trekkes også frem som en løsning som kan levere både opp- og nedregulering, og som vi antakelig vil se mer av frem mot 2030/40.

- Bortsett fra solkraft i kombinasjon med batteri, ble ikke ny fornybar energi ellers trukket frem som spesielt formålstjenlig for å håndtere kapasitetsutfordringer. Som et nettselskap påpekte, kommer toppplasten i perioder med høyt forbruk, for eksempel en kald vinterdag, og sol og vind er da typisk ikke tilgjengelig. Derfor mente flere av nettselskapene at det hovedsakelig er forbrukssiden som vil bidra med fleksibilitet fremover.

- Hydrogen er foreslått som alternativ energibærer brukt i f.eks. transportmidler for å avlaste strømnettet der det ellers ville vært naturlig å elektrifisere.

- Småkraftverk ble trukket frem som en mulig fleksibilitetsressurs, men fordi de er avhengig av en viss vannføring i elva, er det ikke gitt at småkraftverk kan levere fleksibilitet når det trengs.

- Mikronett (eller mikroenergisystemer) er forventet å være mer utbredt i nettet frem mot 2040. Disse vil kunne ha mulighet til å koble seg fra hovednettet og drives i øydrift i tilfeller der det er kapasitetsutfordringer eller andre utfordringer i overliggende nett.

- Ett nettselskap trakk frem "vehicle-to-grid", altså at elbilbatterier kan mate inn i nettet, og en forventning om at det kan være modent nok til å tas i bruk frem mot 2040.
5 Hovedfunn og anbefalinger

I dette kapitlet presenteres anbefalinger og konklusjoner basert på hovedfunn fra undersøkelsen.

1. Kunnskap hos nettselskapene

 - For at nettselskapene skal ta i bruk fleksibilitet, må de selv avdekke behov for å bruke det. Det innebærer å identifisere nettutfordringer der fleksibilitet er et egnet tiltak istedetfor for eksempel investering i nett.

 - Nettselskap har ikke oversikt over hvilke kunder som kan være fleksible og har ikke folk som kan "dra ut og kartlegge". De som driver med nettplanlegging, reiser ikke rundt og snakker med kunder.

2. Modenhet på kundesiden (næringskunder)

 - Mange kunder har begrenset kunnskap om eget forbruk, egen lastprofil, hvordan ulike produktionsprosesser internt hos kunden virker sammen og hva det vil innebære å agere fleksibelt. I den grad kunder "har hørt om fleksibilitet", samsvarer ikke prisen med forventningene de har.

 - Nettselskap kan bidra til å bevisstgjøre nye kunder om fleksibelt forbruk ved å tydeliggjøre nytte og kostnad både for kunden og for nettselskapet. Tilknytning på vilkår, synliggjør kostnaden ved ordiner forsyning gjennom anleggsbidraget som kan velges bort dersom kunden kan være fleksibel.

3. Aggregatorer kan spille en rolle

 - Flere nettselskap sier at hvis de skal benytte seg av fleksibilitet fra husholdningskunder og andre små kunder (under 1 MW), må denne lasten aggregeres og tilbys som et produkt fra en tredjepart, for eksempel en uavhengig aggregator som da inngår avtale med flere småkunder.

4. Kultur og arbeidsprosesser

 - Det er forskjeller mellom nettselskapene i hvordan de forholder seg til fleksibilitet, men forskjellene innad i hvert nettselskap kan være enda mer markante. Typisk er drifts- og planmiljøene mer konservative enn miljøene som jobber med nye løsninger og myndighetskontakt. Det kan ha å gjøre med rutiner og mandat (for drifts- og planmiljøene), og det kan ha å gjøre med enkeltpersoners tiltro til fleksibilitet.

 o Fleksibilitet oppfattes som et relativt nytt og uprøvd virkemiddel og noen av nettselskapene pekte på risiko for lav eller utilstrekkelig respons ved aktivering av fleksibilitet.

 o Krav til høy leveringspålitelighet og rutiner som knyttes opp til kjente løsninger (investering i nett) gjør at nye løsninger som fleksibilitet velges bort.
I nettplanlegging anses fleksibilitetsløsninger å ha stor uforutsigbarhet. Å planlegge for fleksibilitet som tiltak, kan forutsette mer grunnleggende endringer og arbeidsprosesser, i tillegg til bl.a. endrede eller nye systemer (verktøy) for nettplanlegging.

- De fleste nettselskaper anser seg ikke klare for å vurdere fleksibilitet i nettplanleggingen i dag, men det er forskjeller i hvordan de forstår begrepet "fleksibilitet" og hva de legger i "å hensynta fleksibilitet i nettplanleggingen".

- Nettselskapene er vant til å ha "direkte tilgang" til å løse nettutfordringer (jf. ønske om å eie batterier) og det å kjøpe løsninger fra tredjepart (aggregator og andre fleksibilitetsressurser) vil innebære en ny måte å agere på.

5. Behov for IT-systemer

- Nettselskapene mangler i dag IT-systemer som gir oversikt over hvor i nettet fleksible ressurser befinner seg. Driftssystem og kundeinformasjonssystem er typisk ikke sammenkoblede.

- Det er manuelle prosesser for gjeninnkobling av fleksible kunder (på UKT).

- Det varierer i hvilken grad nettselskapene har sanntidsinformasjon om last og kapasitetsutnyttelse i lokalt distribusjonsnett.

6. Muliggjørende insentiver og avtaler

- Frem mot 2030 ser nettselskapene stort potensial i bruk av tilknytning på vilkår som et virkemiddel for å muliggjøre fleksibilitet i nytt forbruk, spesielt for å opprettholde tilstrekkelige reserver i høyspent og regionalt distribusjonsnett. Dette er særlig aktuelt for store forbrukskunder med alternativ energiforsyning.

- Ny nettleiemodell kan bidra til å utløse fleksibilitet fra mindre kunder i form av fleksibilitet fra elbiladning, varmtvannstanker og husholdningsbatterier. Slik (implisitt) fleksibilitet hos forbrukere forutsetter tydelige prissignaler gjennom nettleien.

- Fleksibilitet fra mindre kunder (husholdningskunder) vil også kunne utløses ved hjelp av aggregatorer.

7. Regulatoriske barrierer
• Inntektsrammereguleringen gir nettselskap insentiver til å investere i nett. Imidlertid ser det ut til å gå på bekostning av insentiv til å ta i bruk for eksempel fleksibilitet. Kjøp av fleksibilitet er en driftskostnad og nettselskapene blir belønnet for å ha så lave driftskostnader som mulig, mens de har gode insentiver til å investere. Dette er en medvirkende årsak til at nettselskap typisk velger investeringer for å løse for eksempel kapasitetsproblemer i nettet.

• Nettselskap har sterke insentiver til å unngå avbrudd gjennom KILE-ordningen. Dette gjør nettselskap risikoaverse når det gjelder å ta i bruk nye virkemidler, som fleksibilitet.

8. Ansvarsfordeling mellom nettselskap og Statnett

• Flere nettselskap trakk frem ansvars- og oppgavefordelingen med Statnett som en barriere for fleksibilitet. Et eksempel er at Statnett har ansvar for flaskehalshåndtering og typisk bruker produksjonsressurser gjennom Regulerkraftmarkedet til dette. Nettselskapene på sin side er ansvarlig for kundetilknytningen og skal "tenke fleksibilitet", men potensiell forbrukerfleksibilitet blir ikke utløst dersom flaskehalsene i regionalt distribusjonsnett håndteres med produksjon.

• Mer generelt ble det pekt på at den som er ansvarlig for et virkemiddel ikke nødvendigvis er den samme som ser kostnadene ved det, og at en bedre ansvars- og oppgavefordeling burde ta hensyn til dette. Det er en utfordring at Statnett ikke ser investeringskostnaden i nettselskapet, og det ble pekt på muligheten for bedre samhandling mellom nettselskap og Statnett.

5.1 Anbefalinger til nettselskap for å utnytte fleksibilitet
Basert på mulighetene og praksis som kom fram i intervjuene, kan vi foreslå følgende til nettselskaper for å utnytte fleksibilitet:

1. En proaktiv kartlegging av behov for fleksibilitet og fleksibilitetsressurser
Nettselskap bør kartlegge egne nettutfordringer og identifisere hvilke som kan løses med fleksibilitet. Dialog bør opprettes tidlig med aktører som søker om nettilknytning, for å hente inn informasjon og lede potensielle nye kunder over på områder der det er ledig kapasitet. En proaktiv kartlegging av kunder og eget behov for fleksibilitet kan også tenkes som en del av eller en forlengelse av RKSU-er. Passiv eller "reaktiv" planlegging kan bety fremtidige driftsutfordringer, dersom for eksempel kunden tilknyttes på ugunstige steder i nettet, og/eller at fleksibilitet ikke blir utløst.

2. Kartlegging av last og potensiell fleksibilitet ved nytilknytning
Det er viktig å avklare hvilke forutsetninger som ligger til grunn for effektbehovet som er meldt inn ved forespørsel om tilknytning. Dialogen med kunden kan brukes til å få dem til å forstå eget forbruk bedre, inkludert ulike laster, systemer og prosesser, sammenheng og sammenlagring mellom disse, tilgjengelige reserver, og hvilke behov de har for leveringsplåtelighet. Dette gir kunde og nettselskap bedre innsikt i behovet for nettstabil og potensiell fleksibilitet.
Det kan ta lang tid (flere år) å bygge opp en portefølje av fleksibilitetsressurser, og derfor bør kartleggingen starte tidlig. Det er for sent å starte kartleggingen på det tidspunktet beslutningen om en nettinvestering må gjøres.

Å kartle jeg potensiell fleksibilitet hos en ny kunde kan gi bedre uttelling enn å kartlege eksisterende kunder i nettområdet, blant annet fordi den nye kunden kan ledes til et gunstig punkt i nettet. En målrettet sondering hos eksisterende kundegrupper med kjent fleksibilitet, f.eks. kjølelagre eller kjøpesentre kan også gi høy uttelling i form av fleksibilitet.

3. Anleggsbidrag synliggjør kostnaden ved ordinær forsyning

Dialogen med potensielle nye kunder bør brukes til å vurdere fleksibilitet i nytt forbruk. Muligheten til å tilknytte kunden med vilkår om utkobling eller redusert forsyning, vil synliggjøre kostnaden ved ordinær forsyning. Det er ikke lavere nettleie ved tilknytning på vilkår, men lavere effektuttak kan gi lavere nettleie, og gjennom å bli bevisst sitt effektbehov kan kunden vurdere hva som er riktig nivå for tilknytningen.

4. Viktig å skaffe erfaring med fleksibilitet

For å kunne ta fleksibilitet i bruk i ordinær drift, må nettelskap starte et sted og teste ut og skaffe erfaring med bruk av fleksibilitet. Dette vil gi mer kompetanse på tekniske løsninger og kunnskap om nødvendig og realisert fleksibilitetsvolum for ulike ressurser, tjenester og formål. Mer erfaring kan gi større tiltrø til fleksibilitetsløsninger, bidra til å bygge ned barrierer knyttet til kultur og bidra til endrede rutiner og arbeidsprosesser. Muligheten med tilknytning på vilkår kan i så måte være en katalysator som gir erfaring og nye verktyg, og gjør det enklere å ta i bruk andre virkemidler senere (f.eks. bilaterale avtaler og fleksibilitetsmarkeder).

Å ta i bruk fleksibilitet vil innebære å innhente en tjeneste fra tredjepart. Mange nettelskap kan vurdere det som usikkert og mer risikabelt enn å bruke tradisjonelle løsninger. Erfaring med fleksibilitetsløsninger kan bidra til å overkomme denne barrieren.

Nettelskapene må ikke nødvendigvis ha egen erfaring med fleksibilitet. Erfaringsutveksling med andre nettelskap kan også bidra til å bygge kunnskap og tiltrø til at fleksibilitet kan være et reelt alternativ i drift og planlegging.

5. Fleksibilitet bør vurderes for flere formål

En gitt fleksibilitetsressurs eller definert fleksibilitetstjeneste (eller -produkt) kan være egnet for flere formål. Fleksibilitet som gjøres tilgjengelig for nettdriften bør derfor ikke øremekkes bare ett enkelt formål. Bruk av fleksibilitet til ulike formål (og ev. for ulike aktører), vil kunne bidra til økt verdi for den som tilbyr selve fleksibiliteten.

6. AMS-data og analyse av tidsserier

Målte AMS-data og mulighet for å analysere lastflyt for (historiske) last-tidsserier gir et bedre utgangspunkt enn tidligere, for å vurdere tilgjengelig kapasitet i nettet og behov for fleksibilitet. Det kan også gi kunnskap om hvor den tilgjengelige fleksibiliteten befinner seg i nettet. AMS bør derfor sees på som en muliggjører for fleksibilitet.
Hensiktsmessig bruk av AMS-data forutsetter flere år med data, og analyser må fange opp historisk samtidighet, ta hensyn til lastprofiler og når på døgnet maks-last inntreffer for hvert lastbidrag. Nettelskaper må også være bevisste på at historiske tidsserier bare i begrenset grad gir informasjon om hva lasten vil være i fremtiden.

5.2 Standardisering av metoder og løsninger
Basert på intervjuene fremstår det et tydelig behov for standardisering av metoder og løsninger for nettselskapene:

1. Retningslinjer for kartlegging av fleksibilitet
Nettselskapene har bruk for retningslinjer for kartlegging av fleksibilitet i nettområder der det er behov for fleksibilitet. Her er det relevant å skille mellom kartlegging av potensiell fleksibilitet hos eksisterende kunder og hos nye (potensielle) kunder. For kartlegging hos nye kunder, kreves det at nettselskapene har en systematikk for dette og stiller de rette spørsmålene.

2. Kobling mellom systemer
Det er behov for standardisering av koblinger mellom systemer for driftssentral og for nettplanlegging. Dette gjelder både plattformer for at nettplanleggere skal kunne hente ut og analysere eller visualisere data fra driftssystemer og plattformer for at driftsoperatører skal kunne ha tilgang til informasjon om tilgjengelige fleksibilitetsressurser og -avtaler. Det er viktig at informasjonssikkerhet (inkl. personvern) vurderes hvis nye koblinger etableres mellom IT-systemer.

3. Standardiserte fleksibilitetsprodukter og -avtaler
Det er et behov for standardisering av avtaler om å gjøre fleksibilitet fra kunder tilgjengelig for nettselskapene. Det kan defineres et avgrenset sett med fleksibilitetsprodukter med maler for avtaler om fleksibilitetstjenester for ulike bruksområder. Det kan gjøre det enklere for det enkelte nettselskap å ta i bruk de fleksibilitetstjenestene som er relevante for dem. Her inngår også behovet for å avklare hvordan aktivert fleksibilitet skal avregnes.

4. Standardrapporter og ekstern kommunikasjon
Det fremstår å være et stort behov for standardiserte måter å fremstille informasjon om fleksibilitetsavtaler til kunder.

For potensielle fleksibilitetstilbydere er det behov for informasjon om mulige fleksibilitetsavtaler og insentiver for dem for å inngå slike. Dette inkluderer informasjon om hvor stor risiko det er for at fleksibilitet aktiveres og hvordan denne kan forventes å endre seg over tid. For tilknytning på vilkår vil dette innebære estimat for sannsynligheten for utkobling. Informasjonen vil gjøre det mulig for kunder å forstå den risikoen de tar ved å inngå en avtale.

For kunder med fleksibilitetsavtaler er det behov for standardrapporter med informasjon om hvordan fleksibiliteten har blitt (eller ikke har blitt) utnyttet over rapporteringsperioden.
5.3 **Behov for ny kunnskap**
Basert på utfordringer, barrierer og muligheter beskrevet i denne rapporten, mener vi å kunne peke på følgende behov for ny kunnskap og utvikling av metoder og verktøy:

1. **Metoder for å estimere last for nettplanleggingsformål**
Planlegging med fleksibilitetsløsninger forutsetter kunnskap om oppførselen til eksisterende og nytt forbruk og hvordan det påvirker belastningen i nettet. Dette inkluderer kunnskap om tidsvariasjon, variabilitet, korrelasjon og sammenlægning mellom ulike former. Nettselskap trenger metodikk for å sjekke at antagelserne om forbruk som de legger til grunn for nettplanleggingen, er rimelige. For eksempel bør sammenlægningstransporter som legges til grunn når en planlegger nytt nett, avhenge av hvor fleksible nye og eksisterende kunder forventes å være i fremtiden. Mer tilgjengelig lastdata (særlig AMS-data) vil være nyttige, men metoder og verktøy trengs for å estimere faktisk belastning i nettet og maks-last basert på historiske (AMS-)data. Ny funksjonalitet i nettinformasjonssystemer for tidsserie-beregninger basert på målte timesverdier er et godt utgangspunkt. Ny metodikk trengs imidlertid for å kunne bruke data i analyseplattformer og retningslinjer for å vurdere gjenstående kapasitet og behov for tiltak i nettet.

2. **Systematikk for å kartlegge fleksibilitet**
Flere nettselskap uttrykte behov for bedre oversikt over driftssituasjonen i eget nett, inkludert sanntidsinformasjon om den faktiske belastningen av nettsystemene, kapasitetsutnyttelse og informasjon om hvor og når det kan oppstå flaskehalser. Mer kunnskap og bedre metoder for å estimere lasten i nettet kan utnyttes til å holde oversikt over hvor i nettet det kan komme nettutfordringer og dermed være behov for fleksibilitet. Det trengs fortsatt mer kunnskap om hvilket omfang, høyhastighet, varighet osv. som karakteriserer behov der fleksibilitet er et egnet tiltak.

For å vurdere hvor mye fleksibilitet som kan tilbys fra strømkunder (f.eks. ved netttilknytning), trengs metoder og retningslinjer slik at nettselskapene kan vurdere faktisk forbruk, inkl. tidsvariasjon og sammenlægning til ulike lastbidrag hos strømkunden, i tillegg til informasjon om hvor i nettet fleksibiliteten befinner seg.

3. **Metodikk for kost-nytte-analyse av fleksibilitetsløsninger**
For tilfeller der fleksibilitet er et egnet tiltak, trengs metodikk for kost-nytte-analyse av fleksibilitetsløsninger for å finne den beste kombinasjonen av virkemidler (muliggjørende insentiver), fleksibilitetsressurser og (ev. utsette) investeringer i nett. Blant annet trengs metodikk for å regne på hvor stor gevinst det er ved å bruke tilknytning på vilkår for en ny kunde eller å få en kunde på utkoblings tariff. Som en del av dette trengs metoder og verktoy som beregner KILE korrekt og tar hensyn til ulike avtaler for utkobling og fleksibelt forbruk. Metoder og verktøy bør også kunne kvantifisere og belyse hvilken verdi og risiko dette vil ha for nettselskap og for kunde, relatert til ulike fleksibilitetsavtaler. Dette kan inkludere forventet hyppighet eller sannsynlighet for utkobling av en kunde, hvor lenge utkoblingen kan vare, og hva sannsynligheten er for utkoblinger som ikke er dekket av vilkårene i tilknytningsavtalen.
6 Vedlegg - Intervjuguide

Intervjuguide for gjennomføring av intervjuer med norske nettselskap om fleksibilitet. Rettet mot ansatte hos nettselskap som jobber med nettanlegg og/eller drift av nettet.

Mål med forskningen:

Foreslå tiltak for at nettselskap skal kunne ta i bruk fleksibilitet i planlegging og drift av nettet der dette er en kostnadseffektiv løsning.

Få en oversikt som kan danne grunnlag for mulig standardisering av metoder og løsninger for å ta i bruk fleksibilitet,

Utarbeide et policynotat om barrierer og drivere for hvordan nettselskapene kan utvikle og utnytte fleksibiliteten.

Mål med intervjueene:

Avdekke om det er praktiske, tekniske og regulatoriske eller andre hindre for at nettselskap tar i bruk fleksibilitet i drift og planlegging av nettet.

Målgruppe/type informanter: 2-3 ressurspersoner fra syv ulike nettselskap med ulik størrelse i antall kunder (små/mellomstore/store) og som representerer ulike regioner (geografi).

Rekrutteringsstrategi: Direkte invitasjon fra Energi Norge og CINELDI til deltakere i "ressursgruppe fleksibilitet". Deltakerne må gjerne henvise til andre kollegaer som informanter hvis de ønsker det.

Metode: ca. 1,5 time dybdeintervjuer (semi-strukturert, lydopptak og transkribering), fortrinnsvis via Microsoft Teams (vår 2021).

Begrepsapparatet og tabellene vi bruker i disse intervjueene stammer fra CINELDI, og er gjengitt i vedlegg.

Gjennomføring: Våren 2021
Innledning

Generell informasjon om forskningsprosjektet, databehandling og samtykke

Kort informasjon rundt prosjektet og håndtering av data. Be om samtykke til å bruke intervjuet og til å ta lydopptak.

Spørsmål knyttet til informanten og nettselskap

Be informanten fortelle litt om seg selv og stilling/rolle i organisasjon/arbeidsplass.
Be informanten fortelle om organisasjon/arbeidsplass/rolle i det norske kraftsystemet.

Status i dag

Tilgjengelig fleksibilitet i dag

- Undersøker dere om fleksibilitet hos industrikunder eller andre forbrukerkunder er tilgjengelig i dag? Hvis "Ja", hvordan undersøker dere dette?
- Er fleksibilitetsressurser (forbruk, produksjon, energilager/batteri) tatt i bruk av deres nettselskap i dag? Hvis "Ja":
 - Til hvilke(t) formål har dere ev. tatt i bruk fleksibilitet i eget nett? (Flaskehåndtering, reduksjon av topplast/overbelastning, spenningskvalitet, …)
 - Hvor mange nettkunder (antall avtaler?) tilbyr en form for fleksibilitet i dag?
 - Hvilke typer nettkunder tilbyr fleksibilitet (aggregatører/store kunder/kraftprodusenter/…)?
 - Hvilken type avtale har dere med nettkunde(r) knyttet til aktivering av fleksibilitet, og i hvor stor grad er disse tatt i bruk i deres nett?

Eksempler på avtaler for å utløse fleksibilitet:
- Tariffer (effektbaserte/tidsdifferensierte)
- Utkoblbar tariff (UKT)
- Bilaterale avtaler
- Auksjon/anbud
- Løpende marked
- Annet?

Hvilke system brukes i dag til å ev. aktivere fleksibilitet? (f.eks. styringssystemer)

Brukes fleksibilitetsressurser til å håndtere kort- eller langsiktige nettproblemer? (Med andre ord: En midlertidig løsning for å avhjelpe et uforutsigbart/akutt problem, eller en mer planlagt/varig løsning?)

Ytterligere bruk av fleksibilitetsressurser (forbruk, produksjon, energilager/batteri)

Ville dere tatt i bruk fleksibilitet i planlegging og drift i større grad enn i dag, hvis det var slike ressurser/tjenester tilgjengelige?

Kjenner du til at noen ønsker å tilby fleksibilitetstjenester til dere?
Nettplanlegging/nettinvestering i dag

- Hva er det hos dere som gjør at man starter en prosess for nettplanlegging i dag? (Eksempler på årsaker og utfordringer: økt forbruk, distribuert produksjon, spenningsproblemer, pålitelighet, eksterne faktorer, … Se flere eksempler i Vedlegg V1 og eksempel på planprosess i Vedlegg V325.)
- Nevn to typiske (men ulike) eksempler/case på hva som utløser behov for nettplanlegging. Eksemplene kan f.eks. beskrives med utgangspunkt i hvilke metoder og verktøy som brukes, databehov for ulike metoder/verktøy, hvilke alternative tiltak som typisk vurderes, …
- Vurderes fleksibilitet som alternative tiltak i nettplanleggingsprosessen dag? Hvis "Ja":
 - Til hvilke typer case vurderes fleksibilitet? Her er det ønskelig med eksempler på årsaker til nettplanleggingsprosessen, formål med tiltakene, type nettplanleggingsprosess (f.eks. KSU, nytilknytning i HS-nett, nytilknytning i LS-nett, …), osv.
 - Hvordan blir fleksibilitetstiltaket representert/modellert/analysert i eksisterende metoder og verktøy?
 - Hvordan vurderes risiko (f.eks. knyttet til fleksibilitetstjenestens tilgjengelighet)? (Se eksempler i Vedlegg V5.)
 - Hvordan håndteres ev. vurdert risiko ved bruk av fleksibilitet?

Basert på eksempler på bruk av fleksibilitet:

- Hvilke har blitt iverksatt som tiltak i nettplanleggingen?
- Hvilke utfordringer skal disse tiltakene løse?
- Hva måtte være på plass for å iverksette dette tiltaket?
- Hvilke har blitt vurdert som tiltak i nettplanleggingen?
- Hvilke utfordringer skal disse tiltakene løse?
- Hva må være på plass for å iverksette dette tiltaket?

25 Intervjuguiden inneholdt også eksempler, oversikter og klassifiseringer fra CINELDI. Sendes på forespørsel.
Forventninger fram mot 2030/2040

Bruk av fleksibilitet i drift og planlegging av nettet framover mot 2030/2040

Hvilke fleksibilitetsressurser (forbruk, produksjon, energilager/batteri) forventer dere vil bli tilgjengelig i deres nett fremover med ulike tidshorisonter (se punkt a) og b) nedenfor), levert av hvem og til hvilket formål (se eksempler i Vedlegg V226)?

Bruk av fleksibilitet fram mot 2030/2040

- Hvilke typer fleksibilitetsressurser (forbruk/produksjon/lager, industrikunder/ næringsskunder, aggregator …) tror du vil ha størst potensial for hvilke formål?

Hvilke avtaler/virkemidler tror du blir mest aktuelle (for ulike typer/formål)?

- Kjøp av fleksibilitet i et lokalt marked
- Nettariffer
- Utkobbbar tariff
- Avtale om utkobling gjennom tilknytning (begrenset kapasitet på tilknytning)

Hva tror du skal til for at disse fleksibilitetsressursene skal bli tilgjengelig for nettdriften?

Muligheter for å ta i bruk fleksibilitet

- Hvilke tekniske systemer må være på plass for at dere skal kunne ta i bruk fleksibilitet? (styring, måling, avregning, overvåking, … hos nettselskap, tredjepart (f.eks. aggregator) og/eller kunde)
- Hvilke virkemidler/mekanismer/avtaler er mest relevant for at fleksibilitet kan tas i bruk som alternativ til nettinvesteringer for å utløse fleksibilitet?
- Hva mener du er den største barrieren mot å ta i bruk fleksibilitet i ditt nettselskap? Kom gjerne med eksempler på barrierer hos nettselskap, kunde/fleksibel reessurs, tredjepart (kraftleverandør, aggregator, o.l.), leverandører av programvare/systemer/tjenester, rammebetingelser, … (Eksempler på barrierer er vist i Vedlegg V6).

26 Intervjuguiden inneholdt også eksempler, oversikter og klassifiseringer fra CINELDI. Sendes på forespørsel.
Vedlegg til intervjuguiden

Vedlegget inneholder eksempler, oversikter og klassifiseringer fra CINELDI.
(Referanse: I. B. Sperstad, "Flexibility measures in active distribution grid planning," CINELDI / SINTEF Energy Research, Trondheim, Project memo, 2021.)

V1 Eksempler på årsaker som utløser behov for nettplanlegging

<table>
<thead>
<tr>
<th>Årsaker</th>
<th>Hovedkategori</th>
<th>Oppståtte utfordringer (som utløser behov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generell økning i forbruk</td>
<td>Forbruk</td>
<td>Overbelastning / effektkapasitet (økning i eksisterende), underspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Netttilknytning av nytt forbruk</td>
<td>Forbruk</td>
<td>Overbelastning / effektkapasitet, underspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Elektriske kjøretøy (hjemmelading)</td>
<td>Forbruk</td>
<td>Overbelastning / effektkapasitet, spenningsusymmetri, underspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Hurtigladestasjoner / elektrifisering av tungtransport</td>
<td>Forbruk</td>
<td>Overbelastning / effektkapasitet, spenningsusymmetri, underspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Elektriske fartøy (f.eks. ferger) / elektrifisering av maritimtransport</td>
<td>Forbruk</td>
<td>Overbelastning / effektkapasitet, spenningsusymmetri, underspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Utfordrende elektriske apparater</td>
<td>Forbruk</td>
<td>Spenningsdipp, flimmer, harmonisk forvrengning, spenningsusymmetri</td>
</tr>
<tr>
<td>Midlertidig forbruk (f.eks. byggestrøm)</td>
<td>Forbruk</td>
<td>Overbelastning / effektkapasitet, spenningsusymmetri, underspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Småkraft</td>
<td>Distribuert produksjon</td>
<td>Overbelastning (effektkapasitet), spenningssprang, overspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Distribuert vindkraftproduksjon</td>
<td>Distribuert produksjon</td>
<td>Overbelastning (effektkapasitet), spenningssprang, overspenning (langsomme variasjoner i speningens effektivverdi)</td>
</tr>
<tr>
<td>Distribuert solkraftproduksjon</td>
<td>Distribuert produksjon</td>
<td>Overbelastning (effektkapasitet), spenningssprang, overspenning (langsomme variasjoner i speningens effektivverdi), spenningsusymmetri</td>
</tr>
<tr>
<td>Aldrende nett (økende sannsynlighet for feil)</td>
<td>Nett-internt</td>
<td>Leveringspålitelighet</td>
</tr>
<tr>
<td>Gamle og umoderne nettkomponenter (utfordrende å skaffe reservedeler)</td>
<td>Nett-internt</td>
<td>Leveringspålitelighet</td>
</tr>
<tr>
<td>Utilstrekkelig redundans</td>
<td>Nett-internt</td>
<td>Leveringspålitelighet</td>
</tr>
<tr>
<td>Utilstrekkelig kortslutningsytelse</td>
<td>Nett-internt</td>
<td>Kortslutningsytelse</td>
</tr>
<tr>
<td>Nye bolig-, nærings-, industriområder</td>
<td>Eksternt</td>
<td>Effektkapasitet (ny)</td>
</tr>
<tr>
<td>Flytting av transformerstasjoner, graving, osv.</td>
<td>Eksternt</td>
<td>Effektkapasitet (ny)</td>
</tr>
<tr>
<td>Miljømessige og estetiske lovhensyn</td>
<td>Eksternt</td>
<td>n/a</td>
</tr>
<tr>
<td>Nye reguleringer</td>
<td>Eksternt</td>
<td>n/a</td>
</tr>
</tbody>
</table>

V2 Eksempler på fleksibilitetsressurser og muliggjørende insentiver

<table>
<thead>
<tr>
<th>Årsaker</th>
<th>Hovedkategori</th>
<th>Oppståtte utfordringer (som utløser behov)</th>
</tr>
</thead>
</table>
| Tabell 2 Oversikt over fleksibilitetsressurser
<table>
<thead>
<tr>
<th>Klassifisering (grupper og undergrupper)</th>
<th>Eksempler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuelle fleksibilitetsressurser</td>
<td></td>
</tr>
<tr>
<td>Forbruk - forhåndsbestemt flyt替bart forbruk fremover i tid</td>
<td>Varmtvannstanker, romoppvarming (varmekabler i gulv, elektriske panelovner), elektriske kjøretøy (hjemmelading eller lading på parkeringsplasser)</td>
</tr>
<tr>
<td>Forbruk - flyt替bart forbruk</td>
<td>Fryser/kjøleskap, ventilasjon, klimaanlegg/varmeomn</td>
</tr>
<tr>
<td>Forbruk - forhåndsbestemt flyt替bart forbruk og bakover i tid</td>
<td>Vaskemaskin, oppvaskmaskin, tørketrommel, batteri bak strømmåleren, industriell papirmaskin, andre flyt替bare industrielle prosesser, datasentre</td>
</tr>
<tr>
<td>Forbruk - utkoblbart forbruk</td>
<td>Utkoblbare sluttbrukere (som kan f.eks. ha utkoblbart tariff eller en bilateral avtale om utkobling)</td>
</tr>
<tr>
<td>Produksjon - kontrollerbar</td>
<td>Kontrollerbare kraftverk (termisk og vannkraft med reservoar)</td>
</tr>
<tr>
<td>Produksjon - ikke-kontrollerbar</td>
<td>Ikke-kontrollerbar distribuerte variable fornybare energikilder (f.eks. solenergi med plusskunder, vindturbiner, elvekraft/småskala vannkraftverk)</td>
</tr>
<tr>
<td>Energilager - stasjonære enkle system</td>
<td>Elektrokjemiske batterier, redox-flyt batterier, svinghjul, superkondensatorer, hydrogenlager</td>
</tr>
<tr>
<td>Energilager - stasjonære system med produksjon</td>
<td>Batteri med solenergiproduksjon, batteri med vindkraftproduksjon</td>
</tr>
<tr>
<td>Energilager - mobile system</td>
<td>Elektriske kjøretøy- og farkoster (med "vehicle to grid"), dedikerte mobile energilagringssystemer (mobile "nødaggeregat", "vehicle for grid"), koordinering av hurtigladingsstasjoner for elektriske kjøretøy</td>
</tr>
<tr>
<td>Sammensatte (eller agregerte) fleksibilitetsressurser</td>
<td></td>
</tr>
<tr>
<td>Mikronett (nettlikoblet mikronett, virtuelle mikronett)</td>
<td>Lokale energisamfunn, (tilnærmet-)nullutslippssnabolag</td>
</tr>
<tr>
<td>Fleksibilitets aggregator portefølje, virtuelle kraftverk</td>
<td></td>
</tr>
</tbody>
</table>
Figur 1 En mulig klassifisering av fleksibilitetsressurser og deres muliggjørende insentiver (virkemidler/mekanismer)
V3 Overordnet systematikk for nettplanlegging med fleksibilitetstiltak

1: Etablere forutsetninger
2: Modellering av last og produksjon (inkl. usikkerhet)
3: Generere eller modifisere tiltak
4: Teknisk-økonomisk analyse av tiltak og vurdering av risiko
5: Multi-kriteriosanalyse av tiltak
6: Forkaste eller modifisere tiltak
7: Samlet vurdering og rådferd

Behov i nettet (utfordringer)
Grovvurdering og utvelgning ("screening") av aktuelle tiltak
Fleksibilitetstiltak (mulige løsninger)

Figur 2 Fleksibilitetstiltak sett i forhold til et rammeverk for aktiv distribusjonsnettplanlegging.

V4 Eksempler på bruk av fleksibilitet i planlegging og drift av nettet er bl.a.

- Forbrukerfleksibilitet – smart lading av elbil, batteri hos kunde, flytting av forbruk (varmtvannsbereder), tilknytningsavtale med avtale om fleksibelt forbruk, …
- Distribuert produksjon – stans i produksjon ved for høye spenninger, kjøp av reaktiv effekt, …
V5 Eksempler på mulige usikkerheter som kan utgjøre barrierer for fleksibilitetstiltak

Tabell 3 Oversikt over driftsusikkerheter relatert til fleksibilitetstiltak

<table>
<thead>
<tr>
<th>Parametere</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaksjonstid / aktiveringstid / responstid / forsinkelse</td>
<td>Vil de fleksible ressursene respondere så raskt som det er behov for?</td>
</tr>
<tr>
<td>Treffsikkerhet / forutsigbarhet / tilgjengelighet</td>
<td>Vil de fleksible ressursene respondere med den mengden det er behov for? Vil den behøvde mengden fleksibilitet være tilgjengelig når den trengs?</td>
</tr>
<tr>
<td>Presisjon</td>
<td>Vil variasjonen i den levere responsen være innenfor et akseptert nivå?</td>
</tr>
<tr>
<td>Pålitelighet / reaksjonsevne</td>
<td>Hva er sannsynligheten for at den fleksible ressursen ikke responderer når den blir etterspurt (av en aktiveringstilsett eller prissignal)?</td>
</tr>
<tr>
<td>Tjenestetid</td>
<td>Vil fleksibilitetsressursen være i stand til å respondere gjennom hele perioden det er behov for den?</td>
</tr>
<tr>
<td>Gjenninnkoblingseffekt (Rebound)</td>
<td>Kan laststopper som utsettes til et senere tidspunkt føre til mer alvorlige laststopper på grunn av endringer i driftsplaner?</td>
</tr>
<tr>
<td>IKT-sikkerhet</td>
<td>Er IKT-systemene som kontrollerer de fleksible ressursene sårbare for cyber-angrep?</td>
</tr>
<tr>
<td>Styrbarhet</td>
<td>Hvis ressurser ikke er aktivt eller direkte styrt av nettopporter og enten styrt automatisk eller av en tredjepart: vil driftsplanene være i samsvar med behovene til nettopporter? Hvordan vil styringsalgoritmen oppføre seg i praksis? Hvordan vil aktivering eller settidspunkt endres når forholdene i nettet (last, spenning, osv.) endrer seg?</td>
</tr>
<tr>
<td>Kompleksitet</td>
<td>Vil kompleksiteten til styringsystemene, kombinasjonen av flere ressurser og aktører, gjensidige avhengigheter, interaksjon mellom nettnivå osv. føre til nye risikoer i driften av distribusjonsnettet?</td>
</tr>
</tbody>
</table>

Tabell 4 Nye langsiktige usikkerheter relatert til fleksibilitetstiltak

<table>
<thead>
<tr>
<th>Parametere</th>
<th>Beskrivelse (eksempler)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleksibilitetspotensiale</td>
<td>Hvorfor vil (aggregert) fleksibilitetspotensiale i et område utvikle seg de neste 10 til 20 årene? Hvor stor andel av tilknyttet forbruk vil være fleksibel i fremtiden? Hvor mye av fleksibilitetspotensialet kan bli realisert?</td>
</tr>
<tr>
<td>Tilgjengelighet</td>
<td>Hvis vi utfører et fleksibilitetstiltak i dag basert på en gitt fleksibel ressurs, vil den samme ressursen være tilgjengelig om 5 eller 10 år? Hvor lenge kan avtalen vare?</td>
</tr>
<tr>
<td>Eierskap</td>
<td>Vil eieren av fleksibilitetsressursen være den samme de neste årene, eller er det mulig at en ny eier av en bedrift eller bygning ønsker å trekke seg ut av fleksibilitetsmarkedet eller reforhandle avtalene?</td>
</tr>
<tr>
<td>Regulering</td>
<td>Hvorfor er det mulig for fleksibilitetstilbydere og netselskap å inngå avtaler?</td>
</tr>
</tbody>
</table>
Vil det være et fleksibilitetsmarked som dekker det relevante nettområdet? Vil det være tilstrekkelig med fleksibilitetstilbydere eller vil markedet forblir underutviklet? Vil markedet fungerer effektivt?

Vil ny teknologi forårsake nye praktiske problemer (for eksempel ubeleilig eller ukompatibel ladeteknologi)? Kan ubeleilighet eller umodenhet i teknologien redusere mengden av potensiell fleksibilitet som realiseres?

Hva skal nettselskapene betale for fleksibilitet (eller hva kan fleksibilitetstilbyderen få for produktet sitt) i fremtiden? Hvordan vil kostnaden for å installere, for eksempel batterier, utvikle seg i fremtiden?

Hvis et energilagringssystem med batteri velges som fleksibilitetsressursen, hvordan vil effektkapasiteten, energikapasiteten og virkningsgraden til ressursen endres de neste 10 årene? Hva vil være den økonomiske levealderen til ressursen?

Hvor forskjellig vil den Teknokapitalen til ressursene i fremtiden sammenliknes med de tilgjengelige ressursene i dag? Vil de ha kortere responderingstid, høyere virkningsgrad, osv.?

Hvor mange lastopper (perioder i overlast) kan forventes per dag eller per år? Hvor bratte vil lasttoppene være?

V6 Eksempler på barrierer mot å ta i bruk fleksibilitet i ditt nettselskap

Eksempler på barrierer kan f.eks. være:
- Mangel på styrings- og aktiveringssystemer (hos nettselskap og eller kunde)
- Tilgang på fleksibilitetsressurser- og tjenester
- Barrierer i reguleringen
- Tilgang til markeder for lokal fleksibilitet
- Usikkerhet rundt KILE-kostnader
- Usikkerhet rundt modenheten i tilgjengelig teknologi
- Annet?