
Theme D – Risk analysis – assessment of reliability 

for concrete dams 
Submission for workshop D by Dr.techn.Olav Olsen AS 

Hovde E.1, Strand M.1, Konow T.1 and Engseth M.1 

1Dr.techn.Olav Olsen, Oslo, Norway 

E-mail: thk@olavolsen.no 

 

ABSTRACT:  
As a part of the 14th International Benchmark Workshop in Numerical Analysis of Dams organized by 

ICOLD Committee on Computational Aspects of Analysis and Design of dams, this paper gives a 

summary of the calculations, assumptions and results of Dr.techn.Olav Olsen AS for theme D – Risk 

Analysis – assessment of the reliability for concrete dams. 

The analysis is conducted with SOFiSTiK module Rely. SOFiSTiK is a program mainly used for 

FEM-analysis and structural design. Rely is an add-on to the SOFiSTiK program that performs 

reliability analysis, where the engineering system of interest is modeled using one of the SOFiSTiK 

finite element modules. The kernel of Rely is powered by the stand-alone software package Strurel. 

1 Introduction 

This paper is a part of the 14th International Benchmark Workshop in Numerical Analysis of 

Dams organized by ICOLD Committee on Computational Aspects of Analysis and Design of 

dams. The paper gives a summary of the calculations, assumptions and results of Dr.techn.Olav 

Olsen AS for theme D – Risk Analysis – assessment of the reliability for concrete dams. 

 

The analysis is conducted with SOFiSTiK module Rely. SOFiSTiK is a program mainly used 

for FEM-analysis and structural design. Rely is an add-on to the SOFiSTiK program that 

performs reliability analysis, where the engineering system of interest is modeled using one of 

the SOFiSTiK finite element modules. The kernel of Rely is powered by the stand-alone 

software package Strurel [1].  The concrete dam has not been modeled in finite elements, but 

the stability calculations is coded with the input language CADINP for a free input format.  

 

The paper includes a chapter for each task in the problem description for this theme.  

2 Deterministic factor of safety – task 1 

2.1 Assumptions 

In the problem description, the dam height is given as 25m, but the drawing in appendix 1 shows 

that it is 0.6 meters taller. The concrete-rock contact where failure is assumed is taken as 

elevation +226.9 m after what is shown on the attached drawing. This gives a total dam height 

of 25.6 m and a retention water level of 24.1 m at elevation +251.0 m. The water level at the 

toe is assumed to be as 3.1 m above the foundation for both cases. 

 

When calculating the resistance against failure for the rock joint, the inclination of the joint 

itself is added to the friction and dilatation angles. 
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The uplift pressure is assumed to be linearly decreasing from upstream water level at the heel 

to the water level at the downstream toe of the dam, if the resultant is within 1/3 of the base 

width. If the resultant is downstream this area, the uplift pressure is assumed equal to the water 

pressure at the upstream heel over the area without compression. The resultant and uplift 

pressure is iterated until equilibrium is achieved.   

 

The hydrostatic pressure on the rock segment above the rock joint is calculated from elevation 

+217.9 m (+226.9m-9m), on both the upstream and downstream side. At the toe the uplift 

pressure is then 3.1 m due to the inclination of the rock joint. At the rock joint, the pore pressure 

is therefore decomposed in a vertical and horizontal component.    

 

The table below shows a summary of values used to calculate the deterministic factor of safety. 

Values marked * are later used as variables in the probabilistic analysis. 

Table 1: Values for deterministic calculations 

Retention water level 24.1 m 

Downstream water level 3.1 m 

Water density 9.81 kN/m3 

Concrete self-weight* 24 kN/m3 

Rock self-weight* 26 kN/m3 

Ice load* 200 kN/m 

Friction angle: Concrete-rock* 35° 

Dilatation angle: Concrete-rock* 15° 

Friction angle: Rock joint* 32° 

Dilatation angle: Rock joint* 8° 

Inclination of the rock joint 20° 

Jacking loss* 10% 

Flood level* 1.5 m 

2.2 Results 

The deterministic factors are presented in the table below. 

Table 2: Deterministic factor of safety for sliding  

 Concrete-rock Rock joint 

Normal load case 1.864 1.825 

Flood load case 1.714 1.660 

 

3 Limit state functions – task 2 

The limit state functions are given as: 

𝑅 − 𝐹 > 0 (1) 

 

Where: 

 R is resistance 

 F is loading 

 



Failure happens when the limit state function is less than, or equal to, zero. To achieve 

convergence the software must also know how close it is to failure. 

3.1 Sliding along the concrete-rock contact 

In the analysis, the resistance for sliding along the concrete-rock is defined as: 

 

𝑅 = 𝑁′ ∙ tan⁡(𝜑 + 𝑖) (2) 

Where: 

 N’ is the sum of vertical forces 

 φ is the friction angle 

 i is the dilatation angle 

 

The vertical forces, N’, include; the self-weight of concrete, jacking force and pore pressure. 

 

The loading, F, which is the sum of all horizontal forces, include; Water pressure (both upstream 

and downstream) and ice load (for the normal load case). 

3.2 Sliding along the rock joint in the foundation 

In the analysis, the resistance for sliding along the rock joint is defined as: 

 

𝑅 = 𝑁′ ∙ tan⁡(𝜑 + 𝑖 + 𝑎) (3) 

Where: 

 N’ is the sum of vertical forces 

 φ is the friction angle 

 i is the dilatation angle 

 a is the inclination of the rock joint 

 

The vertical forces, N’, include; the self-weight of concrete, self-weight of the rock above the 

rock joint and vertical component of the pore pressure along the rock joint. 

 

The loading, F, which is the sum of all horizontal forces, include; Water pressure (both upstream 

and downstream) and ice load (for the normal load case). 

4 Estimation of probability of failure – task 3 

4.1 Definition of variables  

The variables describing the loads acting on the dam and the resistance of the structure is 

modeled with probability density functions (PDF). A common PDF for natural random 

variables is a normal distribution, described by a mean value and a standard deviation. Other 

distributions used in this project are log-normal distributions, which constrain the PDF to only 

positive values and trapezoid distributions. The distributions implemented here are taken from 

the problem description or [2]. Table 3 show a summary of the distributions. The variables 

where assumptions are made, are explained in depth in the following text and marked with * in 

the table. 

 

The water level downstream is kept constant for all cases. 

 

 

 

 



Table 3: Probability distributions 

 Distribution 

type 

Mean value Coefficient  of 

variation 

Standard 

deviation 

Concrete self-

weight* Normal 24 kN/m3 0.04∙0.85 0.816 kN/ m3 

Rock self-weight Normal 26 kN/m3 0.02 0.53 kN/m3 

Ice load* Trapezoid 112 kN/m  0.6 67 kN/m 

Friction angle: 

Concrete-rock Normal 35° 0.05 1.75° 

Dilatation angle: 

Concrete-rock Log-normal 15° 0.2 3° 

Friction angle: 

Rock joint Normal 32° 0.07 2.24° 

Dilatation angle: 

Rock joint Log-normal 8° 0.4 3.2° 

Jacking loss Normal 10% 0.3 3% 

Flood level* Trapezoid 1.03 m 0.74 0.766 

Concrete self-weight 

The concrete self-weight is taken as 24 kN/m3, which is the middle value of the two values 

listed in table PIII 2-1. [2] 

Ice load 

The dam is located in the north of Sweden, which gives a maximum ice thickness of 1 meter. 

The probability distribution should be as given for Norrland, according to table PII 2-1 [2]. The 

ice load distribution is to be truncated to a maximum value of 250 kN/m, due to buckling of the 

ice itself. In PMCD, the truncation is given with a standard deviation of 25 kN/m. 

 

A method for truncation was not found in the manual for the SOFiSTiK Rely-module. Not 

implementing the truncation, leads to an unrealistically high ice load and a high probability of 

failure for the normal load case. We therefore assumed an ice load distribution with a 

trapezoidal distribution with a maximum ice load value of 300 kN/m, the mean value of the 

truncation plus two standard deviations. The figure below show a comparison of the two 

distributions. 

 

Figure 1: Comparison of ice load distributions. Blue line: PMCD, Green line: Our 

assumption. 
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Flood level 

The distribution of the flood level is given by tabulated values of an original CDF. Three 

trapezoid distributions are given as approximations to three subintervals of the original 

distribution. The values outside the corresponding subinterval are supposed to be truncated. 

Using the SOFiSTiK Rely-module there was not found a suitable method of truncating the 

values outside the subintervals. Instead, one trapezoid distribution is used over the entire 

interval. The chosen trapezoid has parameters a=-0.1, b=0.0, c=3.15 and is shown in  

Error! Reference source not found. compared with the original CDF and the three 

recommended trapezoid distributions. The line fit in general well to the lines of the other 

trapezoid lines.  

 

Figure 2: Comparison of CDF distributions of the water level above rwl. 

 

The flood situation is calculated in two separate subcases: one for water height at retention 

water level (rwl) and one for water height above retention water level. 

𝐿𝐶𝑖𝑖,1: 𝐻𝑤 = 𝑟𝑤𝑙   𝑃(𝐿𝐶𝑖𝑖𝑖,1) = 1 − 𝑃(𝐿𝐶𝑖𝑖) = 0.997 

𝐿𝐶𝑖𝑖,2: 𝐻𝑤 > 𝑟𝑤𝑙   𝑃(𝐿𝐶𝑖𝑖,2) = 3 ⋅ 10−3 

The two subcases can not occur at the same time and are thus mutually exclusive.   

The probabilities of each failure event in the flood situation is the total probability of failure 

due to subcase 1 and failure due to subcase 2: 

 

𝑃(𝐹𝑥) = 𝑃(𝐹𝑥|𝐿𝐶𝑖𝑖,1) ⋅ 𝑃(𝐿𝐶𝑖𝑖,1) + 𝑃(𝐹𝑥|𝐿𝐶𝑖𝑖,2) ⋅ 𝑃(𝐿𝐶𝑖𝑖,2),      𝑥 = 𝑎, 𝑏 (4) 

 

  



4.2 Results 

Table 4: Probability and safety index, β 

 Concrete-rock (Fa) Rock joint (Fb) 

 Probability β Probability β 

Normal load case (LCi) 1.971·10-9 5.89 9.147·10-8 5.22 

Flood load case (LCii):     

Flood load case (LCii,1) 4.226·10-11 6.49 1.708·10-8 5.52 

Flood load case (LCii,2) 2.270·10-4 3.51 1.269·10-4 3.66 

SUM Flood case, LCii  6.811·10-7 4.83 3.977·10-7 4.93 

 

5 Sensitivity values – task 4 

Table 5 shows the sensitivity values for the analysis normal load case and the two analysis used 

to calculate failure of probability of the flood. 

 

Higher sensitivity value indicates greater importance of the variable in question. Negative 

sensitivity indicates that the variable acts as a load and a positive sensitivity indicates resistance. 

[2] 

Table 5: Sensitivity values 

 Concrete-rock (Fa) Rock joint (Fb) 

 LCi LCii,1 LCii,2 LCi LCii,1 LCii,2 

Concrete self-weight 0.47 0.49 0.59 0.41 0.43 0.35 

Rock self-weight - - - 0.13 0.13 0.11 

Ice load -0.24 - - -0.18 - - 

Friction angle: 

Concrete-rock 0.64 0.67 0.27 - - - 

Dilatation angle: 

Concrete-rock 0.55 0.55 0.34 - - - 

Friction angle: 

Rock joint - - - 0.78 0.79 0.65 

Dilatation angle: 

Rock joint - - - 0.42 0.42 0.44 

Jacking loss -0.08 -0.08 -0.13 - - - 

Flood level - - -0.66 - - -0.49 

 

6 System reliability of the monolith – task 5 

The reliability of failure of the monolith is calculated for two failure modes separately due to 

two different design situations, leading to four component reliability values. The system 

reliability of the monolith is calculated based on a non-redundant system where failure in one 

component leads to failure in the entire construction. Non-redundant systems are analyzed as 

series systems. [2] 

 



The component failure events are: 

𝐹𝑎: sliding along the concrete-rock contact 

𝐹𝑏: sliding along a rock joint in the foundation  

 

The failure events are considered independent of each other, thus the joint probability of the 

events is: 

𝑃(𝐹𝑎⋂𝐹𝑏) = 𝑃(𝐹𝑎) ⋅ 𝑃(𝐹𝑏) (5) 

 

The failure events are conditional on two load cases: 

𝐿𝐶𝑖: normal design situation  

𝐿𝐶𝑖𝑖: flood situation  

 

For a series, the system failure event is the union of the two component failure events, such that 

the probability of failure for a given load case is  

 

𝑃𝑓 = 𝑃(𝐹𝑎⋃𝐹𝑏) = 𝑃(𝐹𝑎) + 𝑃(𝐹𝑏) − 𝑃(𝐹𝑎⋂𝐹𝑏) (6) 

 

The system reliability index 𝛽 is defined as 

𝛽 = −Φ−1(𝑃𝑓) (7) 

Φ is the standard normal cumulative distribution function and Φ−1 is its inverse function. 

Table 6: Probabilities of failure and system reliability for the two load cases. 

 LCi LCii 

P(Fa) 1.971·10-9 6.811·10-7 

P(Fb) 9.147·10-8 3.977·10-7 

Pf 9.345·10-8 1.079·10-6 

β 5.21 4.73 

 

7 Effect of shear test – task 6 

The basic friction angle 𝜙𝑏  of the concrete-rock contact was assumed to have a given 

distribution of the mean value. With two test samples the prior knowledge of the mean can be 

updated according to section 8 part I in [2]. The information about the variables are summarized 

in Table 7. 

 

The mean of the friction angle was given as a normally distributed variable 

𝜇𝜙𝑏

′ ~𝒩(35°, 1.75°). The friction angle parameter has an on-site variability 𝑉𝜙𝑏

 
= 0.03, such 

that the standard deviation of the parameter is 𝜎𝜙𝑏

 
= 𝑉𝜙𝑏

 
⋅ 𝐸[𝜇𝜙𝑏

′ ] = 1.05° .  The primary 

friction angle is given by the linked distribution 𝜙𝑏~𝒩(𝜇𝜙𝑏

′ , 1.05°). 

 

The distribution of the mean can be updated Bayesian inference. By using equations ( [2] eq 6 

and 7) the updated expectance 𝐸[𝜇𝜙𝑏

′′ ] and variance 𝑉𝑎𝑟[𝜇𝜙𝑏

′′ ] are calculated based on the a 

priori assumption and the test results. By assuming no measurement error and no spatial 

correlation, the total variability on the mean may be approximated as 𝑉[𝜇𝜙𝑏

⁡ ] =

√𝑉𝜙𝑏

2 + 𝑉𝑠𝑡𝑎𝑡,𝜇𝜙𝑏
⁡

2 , where⁡𝑉𝑠𝑡𝑎𝑡,𝜇𝜙𝑏
⁡2 =

𝑉𝑎𝑟[𝜇𝜙𝑏
′′ ]

𝐸[𝜇𝜙𝑏
′′ ]

2 . 

 



The updated mean is given by 𝜇𝜙𝑏

′′ ~𝒩(37.1°, 1.25°) and the updated friction angle is given by 

the linked distribution⁡𝜙𝑏~𝒩(𝜇𝜙𝑏

′′ , 1.11°). Compared to the a priori assumption the updated 

mean is higher, which leads to a more stable dam and the variability is lower. 

 

Table 7: Distributions for basic friction angle for first and updated assumption on mean value. 

Description Variables 

First assumption 

Mean: expectation and 

variance 
𝐸[𝜇𝜙𝑏

′ ] = 35° 𝑉𝑎𝑟[𝜇𝜙𝑏

′ ] = (1.75°)2 = 3.06 

On-site variability 𝑉𝜙𝑏

 
= 0.03 

 

Standard deviation of 

basic friction angle 
𝜎𝜙𝑏

 
= 𝑉𝜙𝑏

 
⋅ 𝐸[𝜇𝜙𝑏

′ ] = 1.05°  

Distributions 𝜙𝑏~𝒩(𝜇𝜙𝑏

′ , 1.05°) 𝜇𝜙𝑏

′ ~𝒩(35°, 1.75°) 

Updated assumption 

Test samples 𝜙𝑏,1 = 37° 𝜙𝑏,2 = 38° 

Sample mean and 

number 

𝑚𝜙𝑏
= 37.5° 𝑛𝜙𝑏

= 2 

Mean: expectation and 

variance 
𝐸[𝜇𝜙𝑏

′′ ] = 37.1° 𝑉𝑎𝑟[𝜇𝜙𝑏

′′ ] = 0.47 

Total uncertainty of 

mean 
𝑉[𝜇𝜙𝑏

⁡ ] = 0.034 𝜎[𝜇𝜙𝑏

′′ ]=⁡𝑉[𝜇𝜙𝑏

⁡ ] ⋅ [𝜇𝜙𝑏

′′ ] = 1.25° 

Standard deviation of 

basic friction angle 
𝜎𝜙𝑏

 
= 𝑉𝜙𝑏

 
⋅ 𝐸[𝜇𝜙𝑏

′′ ] = 1.11°  

Distributions 𝜙𝑏~𝒩(𝜇𝜙𝑏

′′ , 1.11°) 𝜇𝜙𝑏

′′ ~𝒩(37.1°, 1.25°) 

 

 

𝐸[𝜇𝜙𝑏

′′ ] =

𝑚𝜙𝑏
𝑉𝑎𝑟 [𝜇𝜙

′

𝑏
] + 𝐸 [𝜇𝜙

′

𝑏
]
𝜎𝜙𝑏

2

𝑛𝜙𝑏

𝑉𝑎𝑟 [𝜇𝜙
′

𝑏
] +

𝜎𝜙𝑏

2

𝑛𝜙𝑏

 (8) 

 

𝑉𝑎𝑟[𝜇𝜙𝑏

′′ ] =

𝑉𝑎𝑟 [𝜇𝜙
′

𝑏
]
𝜎𝜙𝑏

2

𝑛𝜙𝑏

𝑉𝑎𝑟 [𝜇𝜙
′

𝑏
] +

𝜎𝜙𝑏

2

𝑛𝜙𝑏

 (9) 

 

The table below show probability for the concrete-rock normal load case with updated friction 

angle and the mean as its own variable.  The failure probability is reduced from 1.866·10-8 to 

5.902·10-12. 

 

  



Table 8: Change in the probability due to updated friction angle 

 

LCi 

LCi – with updated 

angles 

Pf 1.866·10-8 5.902·10-12 

β 5.50 6.78 

 

Due to limitations in the software we were unable to insert the mean as its own variable as 

shown in the table and get sensitivity values for the variables. The sensitivity values were not 

requested in the problem description, but in the excel-sheet for submitting results. To find the 

sensitivity values a separate analysis was run with an updated basic friction angle as 
𝜙𝑏~𝒩(37.1°, 1.25°). The results are shown in the table below. 

Table 9: Sensitivity values for updated friction angle  

 

LCi 

LCi – with updated 

angle 

Pf 1.971·10-9 1.368·10-11 

β 5.89 6.66 

Concrete self-weight 0.47 0.81 

Ice load -0.24 -0.35 

Friction angle 0.64 0.24 

Dilatation angle 0.56 0.34 

Jacking loss -0.08 -0.17 

 

The comparison shows that the sensitivity of the friction angle decreases when updating the 

friction angle based on tests. With an updated friction angle, the concrete self-weight has now 

the highest sensitivity value.  

 

8 Conclusions 

The table below shows the estimated failure probabilities for the two load cases and failure 

modes. The flood load case gives the highest probability of failure for both failure modes, where 

the concrete-rock interface has the highest failure probability of these. 

 

 Concrete-rock (Fa) Rock joint (Fb) 

 Probability β Probability β 

Normal load case (LCi) 1.971·10-9 5.89 9.147·10-8 5.22 

Flood load case (LCii) 6.811·10-7 4.83 3.977·10-7 4.93 

 

The PMCD gives a suggestion for a target reliability index for ultimate limit states. The values 

from this analysis corresponds to dam consequence class B, se figure below. 

 



 

Figure 3: Minimum values for β in ultimate limit states [2] 

The sensitivity values presented in chapter 0 shows that the friction angle has a significant 

impact on the result and that preforming shear tests can be valuable to  increase  the safety 

factor, as seen in chapter 7. Additional test of the concrete density may increase the safety factor 

even further. 
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