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Preface

This research project was jointly financed through the project Dam Safety in a Holistic Perspective (DHSP) andthe NorwegianWater Resources and Energy Directorate (NVE). It both gained and suffered from the construct-ive input of a very engaged industry reference group. The original intention of this project was to address theregional differences of thermal ice loads across Norway with focus on coastal reservoirs as one might assumethat those should have systematically lower peak loads than implied by the design guidelines. However, thefocus shifted about half-way through the project as the desire within the reference group was to investigatethe whole spectrum of ice loads throughout Norway. Toward the end of the project period the desire wasvoiced to validate the assumptions underlying this project. Hence the final product is a compromise, as usualfor a research project. Some aspects have been brought to completion, while others have only been touchedupon. This report focusses on the completed work that is most directly applicable to thermal ice loads. Of par-ticular interest might be the comparison between a deterministic approach and a probabilistic approach whichincidentally led to nearly identical results. The deterministic approach was further reduced into a compellingsimple explicit equation. Aspects related to ice load probability distribution may also be of wider significancesince, unlike possibly other parts of the world, a fair share of reservoirs in Norway experience ice loads not inevery winter. In future work, the most value might possibly be gained by investigating snow conditions acrossthe country. While a large database of publicly contributed snow-on-ice observations exists, preliminary workdone in this study suggests that ice observers have generally not focused on the characterization of snow onice. Hence, each snow-related aspect of an observation has be quality controlled. It turned out that a prom-ising way of doing this is with a plausibility check against a buoyancy-considering snow-on-ice model, i.e., workthat started late and was not possible to complete in this project. An unmet open need is to develop a betterdata set of field measurements of thermal ice loads throughout Norway.
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Chapter 1

Overview

1.1 Motivation

Static ice loads on dams occur when a dam constrains the movement of an ice cover. The causes thought tobe most relevant for static ice loads are water level changes and air temperature changes (Carter et al., 1998).This report presents results from a modeling effort of ice loads on vertical concrete dam faces in response toconstrained thermal expansion of an ice cover. Ice loads are known to damage dams. However, there are noreported dam failures due to static ice loads in recent decades even though field investigations and theoreticalinvestigations suggest that ice loads may exceed those specified in regulations. From a Canadian perspective,Morse et al. (2009) summarized the situation as follows:
Whereas recent studies (Carter et al., 1998; Comfort et al., 2003) indicate that ice forces couldbe well above those recommended by the Canadian Dam Association (150 kN∕m), some publicagencies have, in some cases, actually reduced their design values for smaller dams to 100 kN∕m.If these dams are truly unsafe, mitigation measures should be defined and applied as soon aspossible. On the other hand, should ice forces not present a safety risk (as is suggested by thefact that no known dam has failed in this manner), then investing in dam reinforcement may be amisuse of public funds. Thus, it is important to knowwhat constitutes a safe, realistic and practicaldesign value for ice thrust against linear structures.

The current Norwegian regulations (NVE, 2003) stipulate that a thermal ice load of 100 to 150 kN∕m be usedacross Norway, depending on local ice conditions, without quantitative guidance on how to set the limit. Damsin the lowest breach consequence class (bruddkonsekvensklasse) can use 100 kN∕m irrespective of ice condi-tions. Values below 100 kN∕mmay be used based on a case-by-case assessment. Ice loads can exceed thermalice loads in reservoirs with significant water level fluctuations (defined as daily fluctuations≥ ±0.2m, presum-ably based on Lia et al. (2002)). In this case the NVE guidelines stipulate an upper limit on the combined iceforces. The given equation apparently stems from the theoretical reasoning of Carter et al. (1998) who definean upper limit on ice forces in a deformed ice cover containing unfrozen cracks: an ice cover can be assumedto have cracks parallel to the dam at predictable intervals that depend on ice thickness. The maximum loadtransferred by the ice perpendicular to the dam is the force required to displace the ice blocks between thecracks against buoyancy. I.e. the ice cover will start to form rubble at higher loads rather than push into thedam. The limiting line load 𝐿𝐿 is given as a function of ice thickness𝐻 as
𝐿𝐿 = 250𝐻1.5, (1.1)

where𝐻 is in m and 𝐿𝐿 in kN∕m. NVE (2003) further states that the ice thickness can be calculated from thefreezing degree day (FDD) equation
𝐻 = 0.02 𝐹𝐷𝐷0.5, (1.2)
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where 𝐹𝐷𝐷 in ◦Cdays are the regionally tabulated 𝐹100 freezing degree days, and 𝐻 is the ice thickness in
m. While the origin of Equation 1.2 is not given, this equation predicted observed ice thickness in reservoirsinvestigated by Carter et al. (1998) in eastern Canada well. Carter et al. (1998) attribute this equation to Drouin(1976). A co-worker of Drouin in the 1970s, Michel (1971) gave several ice growth equations, among themEquation 1.2, which was labeled “average lake with snow”. However, the same equation has also been used incompletely different context of ice growth, e.g. in the Caspian Sea (Palmer & Croasdale, 2012). The origin of the
0.2m threshold for the limit equation of ice loads due to water level fluctuations that is found in the summaryof Lia et al. (2002) is unclear. The limiting equation of Carter et al. (1998) (i.e., Equation 1.1) is applicableirrespective of water level fluctuations but requires that the ice cover is deformed (i.e., not a horizontal, flatsurface). Previous NVE regulations stipulated ice loads of 100 kN∕m, and a study had been conducted toinvestigate whether this value could bemademore correct (Lia et al., 2002). The study concluded that thermalice loads up to 135 kN∕m had been measured in a reservoir near Narvik, and that there are no reports in theinvestigated literature of measured thermal ice loads in excess of 150 kN∕m. In addition, the report concludesthat higher loads have been observed as a result of water level fluctuations and suggests the use of the lineload limit equation of Carter et al. (1998) (Equation 1.1). Since the publication of the regulations, Comfort et al.(2003) pointed out that water level fluctuations exceeding ice thickness seem to reduce maximum ice loads.Sæther (2019) remarked that several seasons of additional ice load measurements in Narvik had resulted inline loads below 150 kN∕m. Petrich and Arntsen (2018) modeled thermal ice loads at 1700 locations acrossNorway assuming the absence of a snow cover and found significant regional differences. While some regionsexperienced peak loads well below 100 kN∕m, others had average peak thermal loads exceeding 200 kN∕m.Thermal ice loads depend on both ice thickness and temperature fluctuations, both of which have regionaldependencies. Implicitly underlying the current regulatory regime in Norway (NVE, 2003) is the premise thatice in Norwegian reservoirs can be assumed to be typically snow-covered. The original goal of this study wasto model thermal ice loads for temperature conditions across Norway, assuming a snow cover comparable toEquation 1.2 in combination with an ice load model similar to Petrich and Arntsen (2018).

1.2 Background

1.2.1 Modeling

Measurements of ice loads exist, were documented at different level of detail and have been reviewed else-where (e.g. Adolfi & Eriksson, 2013; Lia et al., 2002; Sæther, 2019). Among the more recent measurementsare measurements in China (Qiu et al., 2024), Sweden (Hellgren et al., 2022), Norway (Foss, 2017; Petrichet al., 2020) and Canada (Comfort et al., 2003; Taras et al., 2011). While Gebre et al. (2013) concluded thatthere was still no consensus on how to model thermal ice loads, the numerical treatment outside of empiricalparameterizations seems to have concentrated on elasto-viscous models since.Thermal stress in a confined, solid ice specimen is governed by a balance of thermal expansion, and theelastic and creep properties of ice. Sinha (1983) described such a rheological model for small samples of ice.This model had subsequently been shown to reproduce thermal stresses measured in a hydropower reservoir,although underestimating theirmagnitude (Côté et al., 2016). Themodel of Sinha (1983) contains a numericallyinconvenient delayed elastic stress term, and Kharik et al. (2018) found in a dedicated study that a numeric-ally simpler elasto-viscous model would be sufficient for stress modeling in reservoirs. Elasto-viscous modelshad previously been used to describe ice loads on structures, and their proposed forms differed mainly inthe treatment of the temperature-dependence of creep (e.g. Azarnejad & Hrudey, 1998; Bergdahl, 1978; Cox,1984; Fransson, 1988; Petrich et al., 2015). The present study follows the approach of Cox (1984), which wasdeveloped for a wide range of temperatures, had been calibrated to observations in Norway (Petrich et al.,2015), and has been shown to be able to reproduce measured thermal ice loads in two winter seasons (Petrichet al., 2020). Even where ice load measurements were performed at concrete dams that present a relativelysimple boundary, it had been established that spatial stress inhomogeneity exists along a dam (e.g. Morse
PROJECT NUMBER402000011 REPORT NUMBER2025:00427 VERSION2.0 7 of 41



et al., 2009) and that the highest stresses are not measured simultaneously along the whole dam. This givesrise to a distinction between local and global ice load (e.g. Côté et al., 2016; Morse et al., 2011; Petrich et al.,2015, 2020; Taras et al., 2011). This report considers local thermal ice loads that are relevant to the stability ofindividual sections of a dam.There are approaches toward ice modeling that differ systematically from the approach taken in this study.As an example to highlight that suitable approaches may differ across the globe due to climatic conditions, wetake a model developed by Xie and apparently successfully used in China (Qiu et al., 2024; Xie, 1992): thatmodel is an empirical equation that describes thermal ice pressure on structures such as dams in terms of airtemperature increase from 8 to 14 o’clock, morning air temperature, snow cover, ice thickness, and reservoirconfinement. Since air temperatures in northern Norway are not diurnal in winter there is little doubt that suchan approach to thermal ice loads will be of limited utility in this study. However, other empirical approachescould be more applicable (e.g. Comfort et al., 2003).
1.2.2 Annual Peak Ice Load Probability Distribution

One of the tasks of this project is to establish a probability distribution for annual maximum peak thermal lineloads, and to use this to determine the expected thermal load with a recurrence rate of 50 years. For this, bothan appropriate probability distribution has to be established and proper coefficients need to be found.In graphical analysis of extreme value distributions, the usual process is to plot the data on probabilitypaper, starting with a test for the normal distribution. If the data look positively skewed or have a long tail,probability paper for the log-normal distribution is tried next. If they are either even more skewed or lessskewed, Gumbel or Weibull probability paper would be tried (Santner, 1973).There is limited precedence for the choice of the distribution function of thermal ice loads on dams. It ap-pears to be customary in Norway to use a truncated log-normal ice load probability density function (Mydland& Eklund, 2021; Sandaker, 2018), based on the description of amodel from Sweden (Wilde & Johansson, 2016).Hovde et al. (2018) used a piecewise linear approximation of a truncated log-normal. For the choice of log-normal distribution they refer to theMSc Thesis of Adolfi and Eriksson (2013) who stated that they had chosena log-normal distribution fitted to available publishedmeasurements because the log-normal distribution doesnot predict negative ice loads and the probability of occurrence decreases with increasing line loadmagnitude.Other choices made for probability distributions in a context somewhat related to the present task includethe Gumbel distribution to determine the 10 and 100-year Freezing Index across Norway (ISO13793, 2001;Kvande et al., 2023), and the Gumbel and, more recently, Generalized Extreme Value distribution (GEV) forsnow loads (Tajet & Grinde, 2022).The Generalized Extreme Value distribution (GEV) is a particularly interesting distribution to consider if therecurrence of peak values is to be determined. It is known that a large sample of the maxima of boxed data ofpeak events will converge to the GEV distribution (Jenkinson, 1955). E.g., taking a winter season as a “box” andassuming that there are many load events during a winter season, the distribution of the seasonal maximumloadwill follow the GEV distribution. Three different types of GEV distributions are distinguished depending onthe shape parameter 𝜉 (Fisher & Tippett, 1928). The Fréchet distribution (Type II, 𝜉 > 0) has a lower bound, theReverse Weibul distribution (Type III, 𝜉 < 0) has an upper bound, and the Gumbel distribution (Type I, 𝜉 = 0)is unbounded. The applicable type depends on the parent distribution that created the peaks within the box(Gumbel, 1954). The domain of attraction for the Fréchet distribution are parent distributions that do not haveall of their moments finite, i.e. long-tailed distributions such as Pareto and Cauchy, the domain of attraction forthe Reverse Weibul distribution are distributions with a finite upper endpoint, and the domain of attractionfor the Gumbel distribution are all the remaining distributions, e.g. normal and log-normal (Papalexiou &Koutsoyiannis, 2013). Unfortunately, it takes many peaks to obtain convergence toward the GEV distribution,making fitting for 𝜉 subject to considerable error (e.g. Papalexiou & Koutsoyiannis, 2013). Also, if the numberof peaks in a box is insufficient, the distribution will have more of the character of the parent distribution thanthat of the GEV distribution (Gumbel, 1954).
PROJECT NUMBER402000011 REPORT NUMBER2025:00427 VERSION2.0 8 of 41



Once a distribution is chosen, the parameters need to be estimated from the observed data. The commonlyused methods share two main characteristics, i.e. they converge to the true parameters of the distribution inthe limit of infinitely large datasets, and none is guaranteed to be “better” than the other for small datasets.A wide range of methods exist, and development of methods is ongoing (e.g. Makkonen & Tikanmäki, 2019).Common methods include a linear fit on a quantile plot, e.g. on probability paper (Probability Plot Method)(Gumbel, 1958), determining the moments of the sample and calculating the parameters from this directly(Method of Moments, MoM) (Pearson, 1936), determining the L-moments rather than conventional momentsto calculate the parameters (Probability-Weighted Moments, PWM) (Hosking, 1990; Hosking et al., 1985), andnumerically maximizing the log-likelihood function to adjust the parameters to their most probable value giventhe observed data (Maximum Likelihood Estimator, MLE) (e.g. Coles, 2001).In any event, data should be plotted in order to assess the quality of a fit because summary statistics mayfail to pick up significant characteristics. Anscombe’s quartet is a famous example of a linear fit to four notablydifferent datasets possessing identical statistics (Anscombe, 1973). A time-proven method to evaluate datawith respect to a probability distribution is the quantile plot (also called quantile–quantile plot or Q–Q plot),which contains the points
(Φ−1 ( 𝑖

𝑛 + 1) ;𝑥(𝑖)) for 𝑖 = 1,… , 𝑛, (1.3)
whereΦ−1 is the inverse of the cumulative distribution function (CDF), and the fraction 𝑖∕(𝑛+1) is commonlyreferred to as the plotting position of ordered sample 𝑥(𝑖) of independent observations (a.k.a. order rankedobservations)

𝑥(1) ≤ 𝑥(2) ≤⋯ ≤ 𝑥(𝑛) (1.4)
(Coles, 2001). If Φ is the CDF of the reduced variate (e.g., for the normal distribution the reduced variatewould be 𝑧𝑖 = (𝑥𝑖 − 𝜇)∕𝜎) then the quantile plot is identical to a plot on probability paper, and location (𝜇)and shape parameters (𝜎) can be derived from intercept and slope of a linear fit to the points (e.g. Gumbel,1954; Santner, 1973). Makkonen (2006, 2008) argued that the plotting position 𝑖∕(𝑛 + 1) is in fact the onlycorrect choice for the purpose of estimating return periods from the data. Estimation of recurrence rates basedon plots on probability paper have been discussed by Gumbel (1954) and are widely recognized (e.g. ISO13793,2001). Interestingly, Gumbel (1954) used 𝑠𝑥 to describe the population standard deviation (i.e., division by𝑁)in his derivation of the tabulated coefficients. The derivation in his 1958 (and 2004) work is almost a verbatimcopy of that derivation except that 𝑠𝑥 is defined as the sample standard deviation (i.e., division by 𝑁 − 1)(e.g. Gumbel, 1958). The stated result expressed in terms of 𝑠𝑥 is identical to the 1954 work. Apparently, thepresentation of the 1958 work has found entry into the wider literature (e.g. ISO13793, 2001) while the 1954version is mathematically correct.There is a fundamental problem of how to deal with winters of no ice, i.e. zero thermal ice loads. Adolfiand Eriksson (2013) used the log-normal distribution to fit the ice load data specifically because, as they state,it is only defined for positive values. While this is an intuitive solution for regions that consistently see iceformation, this approach fails where occasional zero-loads appear because some winters were too warm forice to form. In this case, a finite number of zero values appears in the observed distribution, rendering thelog-normal distribution unsuitable.Observations that are present but do not provide well-quantified data points can be dealt with in the con-text of nondetects, i.e. values smaller than a detection limit, through the Probability PlotMethod or Regressionon Order Statistics (ROS) (Helsel, 2010; Shumway et al., 2002). Unlike the Method of Moments, Probability-Weighted Moments, or Maximum Likelihood Estimator, there is a reasonably straight-forward way of dealingwith zero-valued datawithOrder-RankedObservations (ORO): usingORO, a distribution is chosen (e.g. Normal,Log-normal, or Gumbel), the CDF of the observations is scaled to be linear, and the parameters of the distri-bution are determined from slope and intercept derived from least-squares fitting. While records of zerosaffect the position of the other observations in the CDF (Equation 1.3), they do not provide data points for theleast-squares fit. I.e., the only information retained from them is the number of observations smaller than thesmallest non-zero value.
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1.3 Content of Report

In this report, the design thermal ice loads for a given location is determined with three different approaches.The design thermal ice load is the annual peak thermal ice loads with a recurrence rate of 50 years, and thelocation is characterized exclusively by its Freezing Index with 10-year recurrence rate (𝐹𝐼10), of which 1 kmgridded data are readily available for Norway. The approaches are:
• fitting design ice load data derived from a probabilistic model to the local freezing index,
• fitting design ice load data derived from a deterministic model to the local freezing index, and
• calculating design ice load data directly from the local freezing index based on an explicit expressionderived from the deterministic model.

Only the probabilistic model is able to derive a relationship for any chosen recurrence rate. The relationshipbetween input and output is more obvious in the deterministic model, but it is not clear from the outsetwhether the result corresponds to a meaningful probabilistic recurrence rate (however, the model describedbelow happens to reproduce the 50-year recurrence rate). The physically-based explicit equation gives a directresult and thereby suggests a functional shape for curve fitting including a physical interpretation of the fittedparameters. However, it is based on significant simplifications thatmay not apply under all conceivable circum-stances. Only the probabilistic model was originally planned for in this project, while the deterministic modeland the explicit equation were added in response to requests from the reference group. From an engineeringpoint of view, a simple, physically-based and correct result would be most desirable.
1.3.1 Probabilistic Model

In the the probabilistic model the probability distribution for thermal line loads is calculated for many loca-tions across Norway and fitted to a suitable probability distribution function. The design load at the desiredrecurrence rate can then be directly calculated from the distribution function. In this model, the daily airtemperatures drive a column-model of a lake. As the air temperature cools the water, ice starts to form. Airtemperature variations propagate through the ice and modulate the ice growth rate. (Standard numericalmethods are used to perform this calculation.) The ice temperature changes at different depths inside the iceare converted to ice stresses with a rheological model (which is taken from the literature), and the stresses areintegrated through the thickness of the ice to determine the daily development of the line load. From eachwinter only the peak line load is retained. A probability distribution function is fitted to the load simulations of31 winters, and the line load with 50-year recurrence rate is determined from this. Together with the 10-yearFreezing Index of this location, this design line load provides one data point in a scatter plot. The scatter plotis filled with calculations of approximately 2000 reservoir locations across Norway, and an empirical curve isfitted to the plot. This curve describes the relationship between 50-year design line load and local 10-yearFreezing Index.
1.3.2 Deterministic Model

Key parameters determining thermal ice loads are ice thickness, ice temperature, and ice temperature rise.First, statistical relationships are sought relating these three parameters to the 10-year Freezing Index of thedesired location. For this, daily air temperature data are evaluated for minimum seasonal air temperatureand maximum daily air temperature rise in winter. Evaluating data from 31 seasons, the method of ISO13793(2001) is used to determine the values for the 10-year recurrence interval. An empirical curve is fitted tothe scattered relationship between these values and the 𝐹𝐼10 at the respective locations of many reservoirs.Thereafter, a𝐹𝐼10 is selected, ice thickness is determined from an expression from the literature, andminimumair temperature and maximum air temperature rise are taken from above correlations. A thermal ice model
PROJECT NUMBER402000011 REPORT NUMBER2025:00427 VERSION2.0 10 of 41



is initialized with an equilibrium ice temperature profile corresponding to the minimum air temperature andice thickness, and then exposed to a sudden air temperature increase. The ice temperature development issimulated in response to this air temperature increase, and from this the ice stress development throughoutthe depth of the ice is calculated. The ice stress is integrated through the thickness of the ice to determine thepeak thermal line load from this air temperature rise. This is taken as the design line load corresponding to theoriginally selected 𝐹𝐼10. The calculation is performed over a range of 𝐹𝐼10, and the resulting design loads arefitted to an empirical curve. This curve happens to be similar to the relationship for the 50-year design load ofthe probabilistic model.
1.3.3 Explicit Equation

The deterministic model is simplified by approximating ice temperature and ice temperature rise at one char-acteristic depth in the ice cover, and the rheological model is reduced to an explicit relationship between icetemperature rise and peak stress. The design line load is obtained by multiplying that peak stress with the icethickness. The equation can be solved explicitly for the input relationships of the deterministic model, provid-ing an expression for design line load as a function of 𝐹𝐼10. It turns out that this expression predicts that thedesign line load is proportional to the ice thickness. This relationship can indeed be used to fit the result of theprobabilistic model.
1.3.4 Snow

The ice in this study has been assumed to be covered by a “thin snow cover”, defined as a snow cover thatproduces an ice cover of thickness
𝐻𝑖𝑐𝑒 = 0.02 𝐹𝐼0.5, (1.5)

where 𝐻𝑖𝑐𝑒 is in m and 𝐹𝐼 in ◦Cdays. An equation like this is stated in NVE (2003) and was presumablytaken from the work of Carter et al. (1998). Hence, a snow depth algorithm first had to be devised that madethe energy conserving ice growth model reproduce this ice thickness. The Deterministic Model used this icethickness expression directly and made a simple assumptions for the snow depth at the time of peak ice loadsthat is slightly different from the snow depth algorithm of the Probabilistic Model. The Explicit Equation isbased on the same assumptions as the Deterministic Model.While an attempt was made in this study to compare snow depth and ice thickness observations from theNVEVarsomRegobs database (https://www.regobs.no/)with the local Freezing Index, this effortwas ultimatelyaborted due to the need of quality controlling the reported observations.
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Chapter 2

Materials and Methods

2.1 Temperature

The climate of Norway comprises of three groups under the Köppen climate classification system: C (tem-perate), D (continental), and E (polar), i.e. encompassing regions where the monthly average temperature isalways above 0 ◦C (C) to regions where it is always below 10 ◦C (E). Elevation ranges from sealevel to over2400 m, and the topography is often steep with an abundance of spectacular fjord. Although these featuresmake temperature interpolation challenging, NVE provides operational interpolation of air temperature ob-servations from MET Norway’s Climate Databases (KDVH) onto a 1 km grid throughout the country. Data areupdated daily and go as far back as the beginning of 1957. Daily average temperatures are distributed underthe brand name seNorge (https://www.senorge.no/), and the current data version 2 (v2) forms the basis forthis study (Lussana et al., 2016). The product is regarded as an unbiased estimator for air temperatures above
−30 ◦C. At temperatures below −30 ◦C, interpolated air temperatures have been found to show a systematicwarm bias (Lussana et al., 2016). When obtaining temperature data for specific reservoirs spanning severalseNorge grid cells, the grid cell was chosen with an elevation closest to the high-water line of the reservoirs.Temperature data from seNorge v2 were used without further processing.The aim of this study is to predict thermal line loads in terms of readily available metrics of a location.While it is common to describe ice formation in terms of freezing degree days (FDD), i.e. the cumulative sumof daily sub-zero air temperature, this metric is not readily available to the practitioner in Norway. Instead,the Norwegian Public Roads Administration (SVV) distributes a gridded Freezing Index (FI) product based onseNorge data (Kvande et al., 2023). The seasonal Freezing Index is the average temperature of the freezingseason times the length of the freezing season. The freezing season is the period of time with mostly sub-zero temperatures. The mathematical definition of the freezing period is given in ISO13793 (2001) and theimplementation used in this study is described below. The FI is identical to the FDD if the air temperature dropsbelow and stays below zero at one time in fall and rises above and then stays above zero at one time in spring.Otherwise, 𝐹𝐼 < 𝐹𝐷𝐷, and the more days appear above zero air temperature during the winter, the biggerthe difference between FI and FDD. Incidentally, it turned out during this study that the FI is a better metric todescribe the output of ice growthmodels in Norway than the FDD (Section 3.1). As of writing, a convenient userinterface is availablewith a browsablemap (https://www.vegvesen.no/kart/visning/frostsonekart), presentingthe Freezing Index for 10 year (𝐹𝐼10) and 100 year recurrence (𝐹𝐼100). The 10-year and 100-year values weredetermined from a Gumbel distribution fitted to annual 𝐹𝐼 data. The procedure and definition of the FreezingIndex are described in ISO13793 (2001). The data currently presented by SVV are based on temperatures fromthe climate normal 1991–2020. However, as of writing, the SVV map is based mostly on seNorge v1 data withthe last three years from seNorge v2 (Helga Therese Tilley Tajet, personal communications, May 2023). Apreliminary investigation performed as part of the current study showed that the difference between the 𝐹𝐼10from SVV and 𝐹𝐼10 calculated entirely from seNorge v2 data may be as high as ±20% locally.Petrich and Arntsen (2018) used the full seNorge air temperature record since 1957 to calculate thermal
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ice loads. They detrended the determined line loads in order to make statements about the state “today”.However, after a brief investigation of air temperature data from the 20th Century Reanalysis v3 (20CRv3), itwas decided that it would be preferred to use data of the period 1991–2020without detrending in this study asthis is a standard procedure that results in consistencywith theWMOClimatological Normal period 1991–2020.While the climate normal is comprised of 30 calendar years, this study uses 31 winters (1990/91 to 2020/21,inclusive) to avoid partial winter seasons.

2.2 Calculation of the Freezing Index

Freezing Degree Days (FDD) are defined as
𝐹𝐷𝐷 =

∑
∆𝑡 {−𝜃 for 𝜃 < 0 ◦C,

0 else, (2.1)
where the sum is calculated from the beginning of winter until the date of interest, 𝜃 is the air temperature and
∆𝑡 is the period of time over which the air temperature is valid. While Freezing Degree Days (FDD) are trivialto calculate for any day during the winter season, the Freezing Index (𝐹𝐼) is defined in ISO13793 (2001) onlyas an aggregate metric for an entire, reasonably cold winter season. Challenges in the automated determina-tion of the FI were recognized early in the history of automated data processing (Straub & Wegmann, 1965).According to ISO13793 (2001), the freezing index can be calculated as the difference between the cumulativeair temperature maximum and minimum during a winter season. This is recognizing that there will be a pointin time in fall after which the air temperatures are predominantly negative and hence the cumulative air tem-perature will mostly decrease from this time onward. This marks the onset of the freezing season. Likewise,at some point in spring air temperatures will become predominantly positive after which the cumulative airtemperature will start to reasonably consistently increase. This marks the end of the freezing season. At leasttwo practical issues arise:

1. How is the FI to be calculated for a particular day of the season?
2. In a temperature time serieswith only occasional temperature excursions below zero, what is an efficientalgorithm to identify the relevant maximum and minimum?
In this study, the Freezing Index for either a season or a certain point in time is calculated from the tem-perature record starting the preceding 1 August until the date of interest (or the end of the season, e.g. 31 Julythe following year).
1. Within that temperature record, the (latest) date of occurrence of the lowest temperature is identified,and the (latest) date of the coldest 3-day period is identified. The later one of these two is chosen as aseparation point.
2. The date of highest cumulative temperature occurring before the separation point is taken as the initialdate.
3. The date of the lowest cumulative temperature occurring on or after the separation point is taken as thefinal date.
4. The difference in cumulative temperature between the initial date and the final date is the FreezingIndex.
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2.3 Rheological Model of Thermal Ice Loads

The rheological model used in this study had been described by Petrich and Arntsen (2018). It is driven by icetemperature derived from either the probabilistic model, deterministic model, or the explicit equation.The time history of ice stress was calculated at each vertical level of the ice growth model. The rheologicalmodel of Bergdahl (1978) and Cox (1984) was used with parameters discussed by Petrich et al. (2015). Ice stresswas calculated from
𝑑𝜎
𝑑𝑡 = 𝐴𝑑𝑇𝑑𝑡 − 𝐵 (𝑇0𝑇 )

𝑚
( 𝜎𝜎0

)
𝑛
, (2.2)

where 𝜎 is the local stress (positive in compression, with an extension to negative stresses as described byPetrich et al. (2015)), 𝑇 is the local ice temperature, 𝐴 = 200 kPa∕K is the product of the relevant linearelastic modulus (cf. Cox (1984) for a discussion) and linear thermal expansion of the ice, 𝐵 = 342 kPa∕day isthe product of the elastic modulus and a constant describing creep of ice, 𝑚 = 1.92 and 𝑛 = 3.7 are fittedconstants, and 𝑇0 = −1 ◦C and 𝜎0 = 100 kPa are constants for dimensional scaling. The ice temperaturerecord from the thermalmodel was used to derive input parameters 𝑑𝑇∕𝑑𝑡 and𝑇, and the non-linear equationwas solved implicitly at each time step, i.e. the solution for 𝜎𝑖 at time step 𝑖 was determined numerically fromthe value 𝜎𝑖−1 one time step ∆𝑡 earlier by iteratively solving

𝜎𝑖 = 𝜎𝑖−1 + 𝐴
(
𝑇𝑖 − 𝑇𝑖−1

)
− 𝐵

⎛
⎜
⎝

𝑇0
min

{
𝑇max , 12 (𝑇𝑖 + 𝑇𝑖−1)

}
⎞
⎟
⎠

𝑚
1
2
⎡
⎢
⎣
(𝜎

𝑖

𝜎0
)
𝑛

+ (𝜎
𝑖−1

𝜎0
)
𝑛⎤
⎥
⎦

(2.3)
for 𝜎𝑖. The stress 𝜎𝑖 was set to 0 whenever 𝑇𝑖 ≥ 0 ◦C, the limit 𝑇max = −0.001 ◦C is introduced fornumerical reasons, andmin{𝑎, 𝑏} is the minimum operator that returns the lesser of 𝑎 and 𝑏. A zero-crossingfrom 𝜎𝑖−1 to 𝜎𝑖 was prevented if the sign of 𝑑𝑇∕𝑑𝑡 rendered this unphysical, i.e., 𝜎𝑖 was set to 0 in that case.Ice fracture in tension or compression was not treated explicitly (i.e., calculation was performed as in Petrichand Arntsen (2018) and unlike Côté et al. (2016) or Petrich et al. (2020)).At each time step, the line load was calculated from the vertical stress profile according to

𝐿𝐿𝑖 =
𝑁𝑧∑

𝑗=1
𝜎𝑖𝑗

(
1 − 𝜙𝑖𝑗

)
∆𝑧, (2.4)

where 𝐿𝐿𝑖 is the line load at time step 𝑖, 𝑁𝑧 is the number of cells in the discretized column, ∆𝑧 is the cellheight, 𝜙𝑖𝑗 is the liquid volume fraction in cell 𝑗 at time step 𝑖, and 𝜎𝑖𝑗 is the stress at cell 𝑗 at time step 𝑖.

2.4 Model of Ice Growth and Ice Temperature

The ice growth model is a one-dimensional enthalpy-conserving heat transfer model (a column model) thattreats phase change based on the enthalpy–porosity approach (e.g. Brent et al., 1988; Petrich et al., 2006). Icegrows or melts in response to the temperature profile in ice and water, which in turn changes in response tochanges of the air temperature (and snow cover). This model starts with a water column of 4 ◦C on 1 August ofeach year and then adds or removes heat at the air–water surface depending on air temperature. If the watertemperature falls below 0 ◦C ice is formed instead. Subsequent changes of the air temperature will change theice temperature near the upper surface, and heatwill be conducted through thewater and ice accordingly. Thischanges the temperature profile through the ice, which can be used to calculate thermal stresses. Wheneverthe temperature at the ice–water interface falls below 0, ice is formed. When the temperature at the ice–waterinterface increases above 0, ice is melted. The key feature is that this model inseparably links the temperatureprofile of the ice to ice growth and melt, i.e. ice temperature and thickness are mutually dependent on eachother, which is implied by “enthalpy-conserving”.
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Unlike the model Petrich and Arntsen (2018), the open water treatment for large reservoirs was removed,and the ice is snow-covered in amanner that generates the ice thickness equation of NVE (2003) (Equation 1.2).While Equation 1.2 was originally intended to be used to predict the ice thickness based on the freezing degreedays of a winter season, NVE (2003) re-interprets this by referring to 100-year tabulated frost data, which isactually a Freezing Index (FI). In regions growing only a thin ice cover, Equation 1.2 is unlikely to be successfulif used with 𝐹𝐷𝐷 and should rather be used with 𝐹𝐼 to account for air temperatures alternating betweenboth sides of 0 ◦C throughout the winter (cf. Section3.1). Hence, a description of the air–ice heat transfercoefficient, ℎ, had to be sought that makes the ice growth model (Section 2.4) grow ice with a maximum icethickness𝐻𝑚𝑎𝑥 in a winter with Freezing Index 𝐹𝐼,
𝐻𝑚𝑎𝑥 = 0.02𝐹𝐼0.5, (2.5)

where 𝐻𝑚𝑎𝑥 is in m and FI in ◦Cdays. The method used for this was trial-and-error until a description wasfound with physically reasonable parameters that was as simple as possible.It follows a more detailed description of the ice growth model and its implementation in Section 2.4.1.
2.4.1 Model Implementation

The energy conservation equation solved is
𝑐𝜌𝑑𝑇𝑑𝑡 =

𝑑
𝑑𝑧𝑘

𝑑𝑇
𝑑𝑧 − 𝐿𝜌𝑑𝜙𝑑𝑡 + 𝑆. (2.6)

This equation was discretized in a vertical column of grid cells with a uniform height∆𝑧 using the Finite VolumeMethod (FVM) as laid out by Patankar (1980) and solved implicitly. A fully implicit formulation was chosen toavoid artificial temperature oscillations in the presence of large time steps. The tridiagonal matrix equationwas solved by LU factorization exposed by SciPy (Virtanen et al., 2020).In the following, the numerical vertical cell position is denoted 𝑗, where 𝑗 increases downward, while thephysical vertical coordinate 𝑧 increases upward. Starting at time step 𝑖−1, the cell temperature 𝑇 at time step
𝑖 is determined from the fully implicit equation
𝑐𝜌∗𝑗
∆𝑡 𝑇

𝑖
𝑗−

𝑐𝜌𝑖−1𝑗
∆𝑡 𝑇𝑖−1𝑗 = 2

⎛
⎜
⎝

1
𝑘
∗
𝑗−1

+ 1
𝑘
∗
𝑗

⎞
⎟
⎠

−1
𝑇𝑖𝑗−1 − 𝑇𝑖𝑗
(∆𝑧)2

−2
⎛
⎜
⎝

1
𝑘
∗
𝑗

+ 1
𝑘
∗
𝑗+1

⎞
⎟
⎠

−1
𝑇𝑖𝑗 − 𝑇𝑖𝑗+1
(∆𝑧)2

−𝐿𝜌
𝜙∗𝑗 − 𝜙𝑖−1𝑗

∆𝑡 +𝑆∗𝑗 , (2.7)

where the starred parameters (∗) are based on the currently best estimate for 𝑇𝑖 and 𝜙𝑖. Initially, the starredparameters are set to 𝑇𝑖−1 and 𝜙𝑖−1. A phase fraction correction

∆𝜙∗𝑗 = max
⎧
⎨
⎩
−𝜙∗𝑗 , min

⎧
⎨
⎩
1 − 𝜙∗𝑗 , 𝑐𝜌

∗
𝑗
𝑇𝑖𝑗
𝐿𝜌

⎫
⎬
⎭

⎫
⎬
⎭

(2.8)

is calculated to account for freezing ormelting (the functionsmin{𝑎, 𝑏} andmax{𝑎, 𝑏} return the lesser and the
greater of 𝑎 and 𝑏, respectively). The correction∆𝜙∗𝑗 is added to 𝜙∗𝑗 , then 𝑐𝜌∗𝑗 and 𝑘∗𝑗 are updated based on thenew 𝜙∗𝑗 , and Equation 2.7 is solved again. This is repeated until ∆𝜙∗ ≤ 10−6 everywhere in the computational
domain. At that point the current 𝜙∗𝑗 becomes 𝜙𝑖𝑗 (i.e., 𝜙𝑖𝑗 ∶= 𝜙∗𝑗 ) and the calculation of time step 𝑖 is finished.In the energy conservation equation 2.6, 𝑆 is a source term that is non-zero in the current model only atthe upper (“top”) and lower (“bottom”) boundaries of the numerical domain, 𝑡 is time, 𝑧 is distance along thevertical axis, 𝐿 = 334 kJ∕kg is the latent heat of fusion of ice, 𝜌 = 920 kg∕m3 is the density of ice, 𝜙 is thelocal liquid volume fraction (or the grid cell average in Equation 2.7), 𝑇 is the local temperature of ice or water
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(or the grid cell average in Equation 2.7), and the thermodynamic properties at each location or within eachgrid cell are
𝑐𝜌 = 𝑐𝑤𝜌𝑤𝜙 + 𝑐𝑗𝜌𝑗 (1 − 𝜙) , (2.9)

where 𝑐𝑤 = 4200 J∕(kgK) and 𝑐𝑗 = 2100 J∕(kgK) is the specific heat capacity of water and ice, respectively,
𝜌𝑤 = 1000 kg∕m3 and 𝜌𝑗 = 920 kg∕m3 is the density of water and ice, respectively, and

𝑘 = 𝑘𝑤𝜙 + 𝑘𝑗 (1 − 𝜙) , (2.10)
where 𝑘𝑤 = 0.56W∕(mK) and 𝑘𝑗 = 2.0W∕(mK) are the thermal conductivity of water and ice, respectively.In cells that are neither completely solid nor completely liquid, i.e. 0 < 𝜙 < 1, the liquid phase fraction 𝜙 isiteratively adjusted to maintain 𝑇 = 0 ◦C at each time (Equation 2.8).The first (second) term on the right-hand-side of Equation 2.7 is not defined at the upper (lower) boundaryof the domain because it contains a reference to the cell above (below) the upper-most (lower-most) cell, 𝑗.Hence, is removed from the equation describing the boundary cell and any heat exchange through the interfaceis expressed through the source term 𝑆∗𝑗 .The lower boundary of the domain provides a constant heat flux of 𝐹 = 2W∕m2 into the water. Hence

𝑆∗𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐹
∆𝑧 , (2.11)

where ∆𝑧 is the vertical size of the numerical cell, and the second term on the right-hand-side of Equation 2.7is omitted.The heat flux at the upper boundary is determined implicitly through Newton’s law of heat transfer fromthe prescribed air temperature at time step 𝑖 − 1, 𝑇𝑖−1𝑎𝑖𝑟 , the temperature of the cell at the upper surface, andthe thermal resistance imposed by the thermal conductivity of the surface cell in series with an ice–air heattransfer coefficient ℎ. It is
𝑆∗𝑡𝑜𝑝 =

𝑇𝑖−1𝑎𝑖𝑟 − 𝑇𝑖
∆𝑧 [ 1ℎ + ∆𝑧

2𝑘
∗ ]

−1

(2.12)
and the first term on the right-hand-side of Equation 2.7 is omitted. The heat transfer coefficient is ℎ =
15W∕(m2 K) for snow-free and windy conditions, and a function of ice thickness 𝐻 (Equation 2.13), defineddefined in Section 3.3.1 for snow-covered conditions. If the snow cover depends on ice thickness, then ℎ isupdated once at the start of the numerical time step based on ice thickness at time step 𝑖 − 1, i.e. based on
𝐻𝑖−1.With only a moderate bottom heat flux 𝐹, melt is typically dominated by surface ablation.Surface ablation is treated as follows: each time step the upper-most cell is completely liquid (𝜙 = 1) whilelower-lying cells still contain ice (𝜙 < 1), the ice is made to float up to the surface. This was implemented as acopy operation of the porosity and temperature fields of the domain “upward” by one cell. Since the thermalconductivity of water is less than the conductivity of ice, the rate of surface ablation may be underestimated.The ice thickness𝐻 at time step 𝑖 was calculated from

𝐻𝑖 =
𝑁𝑧∑

𝑖=1
𝜙𝑖𝑗 ∆𝑧 (2.13)

and the maximum ice thickness of the season was used later in the analysis.The domain was 15m high with grid size ∆𝑧 = 0.1m, initial conditions were 𝜙 = 1 and 𝑇 = 4 ◦C on1 August of each year, and the time step was ∆𝑡 = 86 400 s (1 day), corresponding to the air temperaturerecord. The energy conservation equation was solved implicitly. Since the model did not include melt fromsolar radiation it was expected that melt rates were underestimated in summer. Simulations were performedseparately for each season, i.e. from 1 August until 31 July of the following year. Hence, perennial ice was notable to form.
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2.5 Peak Ice Load Probability Distribution

A manual pre-screening of probability distribution functions and methods for parameter estimation was per-formed based the comments in Section 1.2.2. Simulations of annual peak line loads were inspected from a setof approximately 30 reservoirs from different regions of Norway that included reservoirs of insignificant lineloads in some years (< 1 kN∕m) and reservoirs with modeled peak line loads exceeding 150 kN∕m in snow-covered conditions. The result of this clearly favored the use of the Normal Distribution with the ProbabilityPaper Method, which allowed for the treatment of line loads < 1 kN∕m as nondetects. A quantitative test(e.g. 𝜒2-test) was not performed due to the small sample size of only 30 winters per reservoir.The probability distributions are shown in the Results Section 3.3.3. Distributions were fitted to Normal,Log-Normal, and Gumbel and Generalized Extreme Value distributions with the Probability Paper Method,Method of Moments, L-Moments, and Maximum Likelihood Estimator.The annual peak thermal line load was determined for each reservoir location from simulations of 31 win-ters. For each reservoir separately, the Normal Distribution was fitted with the Probability Plot Method (Equa-tion 1.3), i.e. by scaling the axes and performing a linear least squares fit. Winters without ice or with peakthermal line loads < 1 kN∕m were treated as nondetects and are not used for fitting but affect the plottingposition of the remaining data. Once the probability distribution was found for a given reservoir, the 50-yearpeak thermal line load was the 98-percentile of the cumulative distribution function.There are at least twoways to perform the Probability Plot parameter estimationmathematically: either byperforming two least square fits and combining them (e.g. Gumbel, 1954; Gumbel, 1958), or by pre-calculatingreduced parameters for the desired number of observations and return period, and scalingmean and standarddeviation of the dataset accordingly (e.g. ISO13793, 2001). The reduced parameters depend on the number ofnondetects in the dataset. The parameter estimation for the first method is outlined in Algorithm 1 (Gumbel,1954, pp. 15 – 16). Once the parameters 𝜇 and either 𝜎 or 𝛽 of the distribution are known, the line load ofreturn period 𝑛 can be calculated as
𝐿𝐿𝑛 = 𝜇 + 𝜎

√
2 erf -1 (2𝑛 − 1

𝑛 − 1) (2.14)
for the Normal Distribution, or

𝐿𝐿𝑛 = 𝜇 + 𝛽 [− ln (− ln 𝑛 − 1
𝑛 )] (2.15)

for the Gumbel Distribution.
Algorithm 1: Calculation of Probability Distribution Parameters using the Probability Plot Method
1 Let𝑚 be the number of observations (30 in our case), 𝑛 the sought return period (50 in our case),and 𝑑 the number of winters without ice loads (i.e. nondetects).
2 Let 𝑤𝑖 with 𝑖 = 1…𝑚 − 𝑑 be the observed values without nondetects ordered from smallest value tolargest value.
3 Let 𝑢𝑖 = (𝑖 + 𝑑)∕(𝑚 + 1) with 𝑖 = 1…𝑚 − 𝑑 be the rank order numbers.
4 Let 𝑣𝑖 = − ln (− ln𝑢𝑖) and 𝑣𝑖 = √

2 erf -1 (2𝑢𝑖 − 1) for Gumbel and Normal Distribution, respectively.
5 Perform a least-squares fit 𝑤 = 𝑎0𝑣 + 𝑏0 for parameters 𝑎0 and 𝑏0.
6 Perform a least-squares fit 𝑣 = 𝑎1𝑤 + 𝑏1 for parameters 𝑎1 and 𝑏1.
7 The parameters of the distribution are 𝜇 = ||||||

𝑏0𝑏1
𝑎1

||||||
0.5 and 𝜎 = (𝑎0

𝑎1
)
0.5 for the Normal Distribution. For

the Gumbel Distribution the second parameter is conventionally called 𝛽 rather than 𝜎.
Another option is to determine the design line load from an equation similar to the one given in ISO13793
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(2001). Adapting the notation of ISO13793 (2001),
𝐿𝐿𝑛 = 𝐿𝐿 + 𝑠𝐿𝐿

𝑦𝑛 − 𝑦
𝑠𝑦

, (2.16)
where 𝐿𝐿 and 𝑠𝐿𝐿 are calculated from all observations but the nondetects according to

𝐿𝐿 = 1
𝑚 − 𝑑

𝑚−𝑑∑

𝑖=1
𝐿𝐿𝑖, (2.17)

𝑠𝐿𝐿 =

√
√√√√ 1

𝑚 − 𝑑
𝑚−𝑑∑

𝑖=1

(
𝐿𝐿𝑖 − 𝐿𝐿

)2
, (2.18)

and 𝑦𝑛, 𝑦 and 𝑠𝑦 were pre-calculated according to Gumbel (1954). Representative results of the calculation forthe parameters of interest in this study are given in Table 2.1. Here,𝑚 = 30 is the number of observations, 𝑑is the number of observed nondetects, and 𝑛 = 50 is the return period sought. Note that for mathematicalcorrectness, Equation 2.18 needs to define the population standard deviation (i.e., dividing by𝑚−𝑑) (Gumbel,1954) rather than the sample standard deviation (i.e., dividing by𝑚 − 𝑑 − 1) (Gumbel, 1958; ISO13793, 2001).Hence, the parameters of the distribution (Equations 2.14 and 2.15) are
𝜇 = 𝐿𝐿 − 𝑠𝐿𝐿

𝑠𝑦
𝑦 and (2.19)

𝜎 = 𝑠𝐿𝐿
𝑠𝑦

(2.20)
for the Normal Distribution, while the parameter in Equations 2.20 would be called 𝛽 rather than 𝜎 for theGumbel Distribution.

2.6 Probabalistic Model

The probabalistic ice load model is relatively simple. At each reservoir location and for each winter of the
30-year record considered, the air temperature record was used (Section 2.1) to drive the ice growth model(Section 2.4), which was then used to derive the peak line load for each winter season (Section 2.3). Basedon the annual peak line loads from that 30-year record, the parameters of the probability distribution weredetermined individually for each location and the line load with 50-year recurrence rate, 𝐿𝐿50, was calculated(Section 2.5). The 10-year Freezing Index 𝐹𝐼10 was calculated from the air temperature data (Section 2.2).Using the 𝐿𝐿50 and 𝐹𝐼10 data of all locations, a straight line was fitted on a log–log plot to relate 𝐿𝐿50 to 𝐹𝐼10.Since gridded data of 𝐹𝐼10 are available for Norway, the design line load 𝐿𝐿50 can be determined with ease atany location.

2.7 Air Temperature Characteristics

Thermal ice loads are brought about by a change in ice temperature, moderated by an ice-temperature de-pendent creep rate. Generally, high rates of temperature increase combined with low ice temperatures willresult in higher ice loads. Ice temperatures depend on air temperature, and hence the typical (i.e. 10-year rateof recurrence) minimum air temperature and typical winter-time rate of air temperature change for a givenlocation shall be determined from seNorge data. Temperature rise was defined as the increase in daily air tem-perature from one day to the next, where the next day’s temperature is capped at an upper limit of 0 ◦C (i.e.an increase from −5 ◦C on one day to either 0 or 1 ◦C the next day would have been counted as a ∆𝜃 = 5 ◦Ctemperature rise).
PROJECT NUMBER402000011 REPORT NUMBER2025:00427 VERSION2.0 18 of 41



Table 2.1: Parameters for Equation 2.16
Gumbel Distribution Normal Distribution

𝑚 𝑑 𝑛 𝑦𝑛 𝑦 𝑠𝑦 𝑦𝑛 𝑦 𝑠𝑦
10 0 50 3.90 0.50 0.95 2.05 0.00 0.79
20 0 50 3.90 0.52 1.06 2.05 0.00 0.87
30 0 50 3.90 0.54 1.11 2.05 0.00 0.90
30 1 50 3.90 0.60 1.08 2.05 0.06 0.85
30 2 50 3.90 0.65 1.06 2.05 0.12 0.81
30 3 50 3.90 0.71 1.03 2.05 0.17 0.77
30 4 50 3.90 0.77 1.01 2.05 0.22 0.74
30 5 50 3.90 0.82 1.00 2.05 0.27 0.72
30 6 50 3.90 0.87 0.98 2.05 0.32 0.69
30 7 50 3.90 0.93 0.96 2.05 0.37 0.67
30 8 50 3.90 0.99 0.95 2.05 0.41 0.65
30 9 50 3.90 1.04 0.93 2.05 0.46 0.63
30 10 50 3.90 1.10 0.92 2.05 0.50 0.61
30 0 100 4.60 0.54 1.11 2.33 0.00 0.90
31 0 50 3.90 0.54 1.12 2.05 0.00 0.90
40 0 50 3.90 0.55 1.14 2.05 0.00 0.92
50 0 50 3.90 0.55 1.16 2.05 0.00 0.93

The minimum air temperature, 𝜃0, and maximum air temperature rise, ∆𝜃, were determined for 31 winterseasons at selected locations. The distribution was fitted to a Gumbel distribution following ISO13793 (2001)and the 10-year rate of recurrence was determined. The scattered data were linearly fitted on a log–log plot.

2.8 Deterministic Model

An undeformed slab of ice is considered of homogeneous physical properties from top to bottom. Thermalice loads are generated when the ice temperature increases. The magnitude of the thermal loads at a giventime depends on (a) the thickness of the ice, (b) the (recent history of the) rate of change of ice temperature,(c) the ice temperature. While (a) depends on air temperature and snow cover in the past weeks or months,(b) and (c) depend on air temperature and snow cover at the time of the event. In this deterministic model,the peak-load-generating event at a location characterized by a particular value of 𝐹𝐼10 is generated in an icecover of thickness
𝐻 = 0.02m 𝐹𝐼0.510 (2.21)

that started in a stress-free state with a linear temperature gradient in the ice corresponding to a 10-yearminimumair temperature according to Section Section 2.7 andwas then subjected to a 10-year air temperaturerise according to Section 2.7. The time step of the temperature model was 1 day.Two scenarios are considered in the deterministic model: (I) snow-free, and (II) moderate snow load. Mod-erate snow load is defined as a snow load that does not yet result in negative freeboard. Further, three degreesof severity are defined: the reference case, “low”, and “high”, where low and high are the conditions leadingto lower and higher thermal ice loads, respectively. The parameters for these scenarios are defined in Table2.2. The model proceeds as follows:
1. 𝐹𝐼10 is used to calculate separately

(a) the maximum ice thickness of the winter season,
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Table 2.2: Constants and equations defining the Deterministic Model. In the equations, 𝐹𝐼10 is the 10-yearFrost Index in multiples of 1 ◦Cdays, 𝐻𝑖𝑐𝑒 is the ice thickness inm, and the units of coefficients 𝑐1 and 𝑐2 aresuch that the corresponding equation is dimensionally correct. Sensitivity of line load to the parameters isshown separately for Scenarios I and II.
Step Symbol Unit Scenario Equation Constants, or Coefficients 𝑐1 and 𝑐2 Sensitivity

Reference Low High I II

1.a.I 𝐻𝑖𝑐𝑒 m I 𝑐1𝐹𝐼𝑐210 0.01, 0.64 0.009, 0.64 0.011, 0.64 7%
1.a.II 𝐻𝑖𝑐𝑒 m II 𝑐1𝐹𝐼𝑐210 0.02, 0.5 0.018, 0.5 0.022, 0.5 11%
1.b ∆𝜃 ◦C I & II 𝑐1𝐹𝐼𝑐210 1.05, 0.348 0.924, 0.348 1.18, 0.348 3% 4%
1.c 𝜃0 ◦C I & II 𝑐1𝐹𝐼𝑐210 −1.38, 0.406 −1.24, 0.406 −1.52, 0.406 7% 6%2.I ℎ W∕(m2 K) I 17 15.3 18.7 1%
2.II ℎ W∕(m2 K) II (1∕𝑐1 + 𝑐2𝐻𝑖𝑐𝑒)

−1 17, 0.5 15.3, 0.55 18.7, 0.45 5%

3 ∆𝑧 m I & II 0.005 <1% <1%∆𝑡 s 3600

3 𝜌𝑖 kg∕m3

I & II 920
(< 3%) (< 3%)𝑐𝑖 J∕(kgK) 2100

𝑘𝑖 W∕(mK) 2

4
𝐴 kPa∕K

I & II
200 180 220

6% 6%
𝐵 kPa∕day 342 376 307
𝑛 - 3.7 3.7 3.7
𝑚 - 1.92 1.92 1.92
𝑇1 ◦C −1 −1 −1
𝜎0 kPa 100 100 100

(b) the 10-year maximum increase of daily average air temperature (below the freezing point), and
(c) the 10-year minimum air temperature (Section 2.7, resulting parameters in Table 2.2).

2. A heat transfer coefficient from air through snow into the ice is determined to calculate the ice temper-ature profile. For load events in the absence of snow (I) the heat transfer coefficient is a constant, andfor load events in the presence of a surface snow cover (II) the heat transfer coefficient depends on snowdepth which is assumed to be proportional to ice thickness (Table 2.2).
3. A transient vertical ice temperature profile is calculated through a slab of thickness according to Item 1a.The bottom of the ice is at its freezing point at 0 °C, and heat transfer from the air is determined by theheat transfer coefficient for scenario (I) or (II). The calculations are initiated with a linear temperatureprofile consistent with the minimum air temperature (Item 1c), with air temperature instantaneouslyraised according to (Item 1b). Physical parameters of the model are given in Table 2.2.
4. Finally, a vertical ice stress profile is calculated from the temperature profile and integrated over thethickness of the ice. This method is based on earlier work with parameters given in Table 2.2 (Petrichet al., 2015; Petrich & Arntsen, 2018).

2.9 Explicit Equation

There is no closed form solution to the transient ice temperature and stress that would allow for an explicitsolution of Steps 3 and 4 in Section 2.8 rather than numerical modeling. However, there is precedent in at-tempting to reduce the temperature development in the ice to a single rate of temperature change and relatingthis to the peak line load. Such efforts date back at least to the work of Royen in 1922 (Bergdahl, 1978), anda more recent example would be the work of Fransson (1988). Although the numerical solution of Steps 3
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and 4 presents no computational challenges, this section adds to this body of work with the development ofan explicit approach suitable for environmental parameters relevant to the Deterministic Model. The explicitapproach is used in this study to give physically-based support for the choice of a best-fit equation.This Section presents amethod that can be used to estimate thermal ice loads resulting from a step-changein air temperature. The thermal line load (𝐿𝐿) is the vertical stress profile of the ice integrated over the thick-ness of the ice. Here, this integral is simplified to a representative stress (𝜎𝑟) multiplied by the thickness of theice (𝐻𝑖𝑐𝑒), i.e.
𝐿𝐿 = 𝜎𝑟𝐻𝑖𝑐𝑒 (2.22)

where the ice thickness is specified, and the representative stress during a load peak is calculated from therheological model (Equation 2.2) by recognizing that the rate of change of stress 𝑑𝜎∕𝑑𝑡 = 0. I.e.,

𝜎𝑟 = 𝜎0 [
𝐴
𝐵
∆𝑇
∆𝑡 (

𝑇𝑟
𝑇1
)
𝑚
]

1
𝑛

, (2.23)
where∆𝑇∕∆𝑡 is the rate of change in ice temperature, the remaining coefficients are from Petrich et al. (2015)(cf. Table 2.2), and care is taken to use consistent dimensions of time (𝐵 uses days). This equation is valid if thepeak stress is reached while the temperature is still increasing. Noting that the bottom of the ice is at 0 ◦C, theincrease of ice temperature, ∆𝑇, is related to the increase in air temperature, ∆𝜃, through

∆𝑇 = ∆𝜃
𝜃0
𝑇0, (2.24)

where 𝜃0 and 𝑇0 are the initial temperature of the air and ice, respectively. The characteristic time requiredfor this change is
∆𝑡 = (𝐻𝑖𝑐𝑒

2 )
2 𝜌𝑖𝑐𝑖
𝑘𝑖

, (2.25)
where 𝜌𝑖, 𝑐𝑖, and 𝑘𝑖 are density, heat capacity, and thermal conductivity of the ice, respectively. The initialtemperature at the center of the ice is

𝑇0 =
1
2

𝜃0
1 + 𝑘𝑖

ℎ𝐻𝑖𝑐𝑒

, (2.26)
where ℎ is the heat transfer coefficient from air through snow into ice. The representative temperature duringthe step change is

𝑇𝑟 = 𝑇0 + 𝛼𝑑∆𝑇, (2.27)
where 𝛼𝑑 = 1.0 is an empirical mixing coefficient appropriate for the model parameters (Table 2.2). Hence,the peak line load can be written as an explicit expression,

𝐿𝐿 = 𝐻𝑖𝑐𝑒𝜎0 [
𝐴
𝐵
∆𝑇
∆𝑡 (

𝑇𝑟
𝑇1
)
𝑚
]

1
𝑛

, (2.28)

= 𝐻𝑖𝑐𝑒𝜎0
⎡
⎢
⎢
⎢
⎣

𝐴
𝐵
∆𝜃
𝜃0

1
2

𝜃0
1 + 𝑘𝑖

ℎ𝐻𝑖𝑐𝑒

4𝑘𝑖
𝜌𝑖𝑐𝑖

1
𝐻2
𝑖𝑐𝑒

⎛
⎜
⎜
⎝

1
𝑇1

1
2

𝜃0
1 + 𝑘𝑖

ℎ𝐻𝑖𝑐𝑒

{1 + 𝛼𝑑
∆𝜃
𝜃0
}
⎞
⎟
⎟
⎠

𝑚⎤
⎥
⎥
⎥
⎦

1
𝑛

, (2.29)

= 𝐻𝑖𝑐𝑒𝜎0
⎡
⎢
⎢
⎢
⎣

𝐴
𝐵
2𝑘𝑖
𝜌𝑖𝑐𝑖

∆𝜃
1 + 𝑘𝑖

ℎ𝐻𝑖𝑐𝑒

1
𝐻2
𝑖𝑐𝑒

⎛
⎜
⎜
⎝

1
2𝑇1

𝜃0
1 + 𝑘𝑖

ℎ𝐻𝑖𝑐𝑒

{1 + 𝛼𝑑
∆𝜃
𝜃0
}
⎞
⎟
⎟
⎠

𝑚⎤
⎥
⎥
⎥
⎦

1
𝑛

. (2.30)
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Chapter 3

Results

3.1 Freezing Index versus Freezing Degree Days

While ice thickness is typically described as a function of Freezing Degree Days (𝐹𝐷𝐷), the frequent wintertimeair temperature excursions above the freezing point in the coastal regions of Norway would suggest that 𝐹𝐷𝐷may not be the most suitable metric to describe ice growth throughout Norway. Figure 3.1 shows the seasonalmaximum ice thickness (𝐻𝑚𝑎𝑥) derived from the ice growth model with the snow parameterization of the

Figure 3.1: Seasonal maximum ice thickness vs seasonal maximum (a) Freezing Degree Days and (b) FreezingIndex from simulations at 2696 reservoirs over 31 winters.
probabilistic model (Equation 3.5) depending on the seasonal maximum Freezing Degree Days (Figure 3.1a)and Freezing Index (Figure 3.1b). By design, the data approximate a curve that resemble the target functions
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Equations 3.1 and 3.2, respectively,
𝐻𝑚𝑎𝑥 = 0.02

√
𝐹𝐷𝐷𝑚𝑎𝑥, and (3.1)

𝐻𝑚𝑎𝑥 = 0.02
√
𝐹𝐼𝑚𝑎𝑥, (3.2)

where𝐻𝑚𝑎𝑥 is inm, and𝐹𝐷𝐷𝑚𝑎𝑥 and𝐹𝐼𝑚𝑎𝑥 are inmultiples of ◦Cdays. The Freezing Index-based relationshipshows considerably less scatter below 700 ◦Cdays (Figure 3.1b), suggesting that Equation 3.2 is a better proxyfor ice thickness throughout mainland Norway than Freezing Degree Days.

3.2 Genesis of a Thermal Ice Load Event

The development of a thermal line load peak from the combination of the temperature model and the rheolo-gical model of Sections 2.4 and 2.3 shall be illustrated in this section.In linear systems the response can be calculated from a superposition of input step functions. This is notthe case for thermal ice loads due to the non-linear relationship between air temperature and ice thickness,air temperature change and ice temperature change, and ice temperature change and stress. The latter twoaspects are illustrated in Figure 3.2 by showing the line load response of an ice cover to a sudden change inair temperature. An ice cover had been grown at an air temperature of 𝜃 = −15 ◦C. After two months, the
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Figure 3.2: Development of a thermal load peak from (a) an air temperature step change. The dots markreference time points. (b) Ice temperature profiles from the ice growthmodel shown at the the reference timepoints, (c) ice stress profiles derived from the ice temperature development at different depths, shown at thereference time points, and (d) line load from vertical integration of the stress profiles, with the reference timepoints marked.
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air temperature increased to −7 ◦C, and another month later the air temperature increased to 0 ◦C. This laststep increase is illustrated in Figure 3.2. Figure 3.2a shows the air temperature increase with time points thatcorrespond to the other subplots. Figure 3.2b shows the ice temperature profile at these time points. Afteronemonth of growth at constant air temperature, the temperature profile is initially essentially linear with thelowest temperature at the ice–air interface. The temperature at the ice–water interface at 0.75m depth is at
0 ◦C. Following the air temperature increase at time point 0 (Figure 3.2a), the temperature in the ice increasesfastest near the ice–air interface, leaving the lowest ice temperature in the ice center of the ice cover.Figure 3.2c shows the depth profiles of the stress. Compressive stress is shown with a positive sign sincethis causes line loads, which are also positive by convention. All stress profiles are zero at the ice–water in-terface because the temperature is constant there and the creep rate is very high. Initially, the ice is slightlyin compression at the ice—air interface, which is a residual from the temperature increase one month earlierin combination with slow creep at low temperatures. From the ice–water interface upward, the ice is in ten-sion because the ice cover is growing, increasing in thickness and hence locally cooling. The remaining stressprofile is a combination of the residual of the earlier temperature increase and the progressive cooling duringice growth. Following the air temperature change at time point 0 (Figure 3.2a), peak ice stresses are observednear the ice–air interface, which decrease in magnitude and increase in distance from ice–air interface withtime. Even though initially the rate of temperature change is highest at the ice–air interface, after only 6 hoursthe highest stress is observed 0.1m below the ice–air interface because the creep rates are high in the warmice closer to the ice–air interface (not shown here, in this scenario the peak stress is in the upper 10mm ofthe ice for less than 2 hours). Hence, contrary to what one might expect and consistent with measurementsin the field, the vertical stress profile is never linear through ice. The vertical integration of the compressivestress results in the thermal line load shown in Figure 3.2d. The line load development shows a pronouncedpeak after approximately 12 hours and falls below half its peak value after 48 hours. While it is somewhatintuitive to think of the thermal load peak as the result of a significant increase in ice temperature and hencecompressive stress followed by creep that reduces the stress, the complexity of the stress profile developmentin Figure 3.2c is indicative of our limited ability to quantitatively relate the step temperature increase in Figure3.2a to the magnitude and shape of the thermal load peak in Figure 3.2d. The system is not linear.

3.3 Probabilistic Model

3.3.1 Snow Depth Parameterization

Modeled ice thickness was to be consistent with Equation 3.2. This was to be achieved by a suitable choice ofthe heat transfer coefficient from atmosphere to ice,
ℎ = min (ℎ0;

𝑘𝑠𝑛𝑜𝑤
𝐻𝑠𝑛𝑜𝑤

) , (3.3)
where ℎ0 = 15W∕(m2 K) is the heat transfer coefficient in the absence of snow, 𝑘𝑠𝑛𝑜𝑤 = 0.2W∕(mK) is thethermal conductivity of snow (e.g. Abels, 1892; Sturmet al., 1997),𝐻𝑠𝑛𝑜𝑤 is the depth of the snow cover, and theoperatormin(𝑎; 𝑏) returns the lesser of 𝑎 and 𝑏. To achieve the target ice thickness, several algorithms weretried, starting with assuming that snow depth is proportional to ice thickness. That approach is attractive as itstill allows for an explicit solution to the Stefan problem of ice growth (e.g. Petrich & Eicken, 2017). However,Figure 3.3 shows that assuming instantaneous snow depth at time 𝑡,

𝐻𝑠𝑛𝑜𝑤(𝑡) = 𝛼𝑠𝑖𝐻𝑖𝑐𝑒(𝑡), (3.4)
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Figure 3.3: Relationship between ice thickness and freezing index for Equation 3.4 (blue line), Equation 3.5 (redline), and
where 𝛼𝑠𝑖 = 0.1 is a constant, will lead to a systematic underprediction of thickness of thin ice with respect toEquation 3.2. Instead, 𝛼𝑠𝑖 was made to depend on ice thickness following

𝛼𝑠𝑖(𝑡) =
⎧
⎨
⎩

𝛼𝑠𝑖0
𝐻𝑖𝑐𝑒(𝑡)
𝐻𝑖𝑐𝑒0

for 0 ≤ 𝐻𝑖𝑐𝑒(𝑡) < 𝐻𝑖𝑐𝑒0,
𝛼𝑠𝑖0 else, (3.5)

where 𝛼𝑠𝑖0 = 0.1 and𝐻𝑖𝑐𝑒0 = 0.5m are constants. Hence,

ℎ(𝑡) =
⎧
⎨
⎩

min (ℎ0;
𝑘𝑠𝑛𝑜𝑤𝐻𝑖𝑐𝑒0
𝛼𝑠𝑖0 𝐻2

𝑖𝑐𝑒(𝑡)
) for 0 ≤ 𝐻𝑖𝑐𝑒(𝑡) < 𝐻𝑖𝑐𝑒0,

min (ℎ0;
𝑘𝑠𝑛𝑜𝑤

𝛼𝑠𝑖0 𝐻𝑖𝑐𝑒(𝑡)
) else. (3.6)

Figure 3.3 shows that this approach yields a more conservative ice thickness estimate for thin ice and bettermatch to Equation 3.2. However, both approaches overestimate thickness of thick ice and underestimate thethickness of thin ice with respect to the reference equation.
3.3.2 Probabilistic Model Process

The process of deriving a peak seasonal thermal line load is illustrated in Figure 3.4. Based on the air tem-perature record at a given location (Figure 3.4a), the water or ice in the column is either warmed or cooled atthe upper surface, resulting in temperature changes at different depths (Figure 3.4b). Ice is formed where thetemperature falls below the freezing point. Temperature in the ice is converted to stress in the ice at differ-ent depths (Figure 3.4c), and vertical integration of the stress results in the modeled thermal line load (Figure3.4d). For each winter season, only the maximum line load is retained as “peak seasonal line load”.
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Figure 3.4: Illustration of the calculation process of thermal ice loads using a snow-free simulation. (a) Air tem-perature that drives the model, (b) development of calculated temperatures at different depths in the column(red spark lines) and ice thickness (blue line), (c) development of ice stress determined from ice temperatures(red spark lines) and ice thickness (blue line), (d) thermal ice load determined from ice stress.
3.3.3 Line Load Peak Distribution Function

In order to extrapolate the peak line loads with 50-year recurrence rate from a 30-year record of modeleddata, the probability distribution needs to be known. This involves two aspects, one is to define the shape ofthe distribution, and the other to estimate of the parameters of the distribution at a given location. Figure 3.5is used to select a distribution shape from the candidates Normal Distribution, Log-Normal Distribution, andGumbel Distribution. Considering reservoirs one at a time, the distributions created from 31 points of modeledline loads did generally not follow an obvious distribution function. Figure 3.5 shows fits performed to threedifferent distributions using the Probability Paper Method considering nondetects (Section 2.5). None of thedistributions seems to have a clear advantage at colder locations (Figure 3.5o–ab). However, distributions differin warmer regions. Nondetects were defined as data points with line loads < 1 kN∕m. Figures 3.5a–f and i–lshow distributions with nondetects. The log-normal distribution did not predict any nondetects (i.e., line load
< 1 kN∕m). The Gumbel distribution produced some, and the normal distribution came closest to accuratelyreproducing the number of years absent a significant load. Hence, the Normal Distribution cannot be excludedas an appropriate description of the modeled peak line load data and in fact may be the superior choice inwarm regions.Figure 3.6 shows an example of data plotted on Probability Paper for the Normal distribution according toSection 2.5. The data points do not deviate systematically from a straight line in this example, indicating thatthe Normal distribution would be a reasonable assumption. All distributions in Figure 3.5 were inspected onProbability Paper for quality control.Other standard methods for fitting distributions performed are not shown here because the algorithmswere not designed to account for nondetects. It shall be remarked here that the fitted parameters depend onthe chosen fitting algorithm.
3.3.4 Design Line Load

Figure 3.7 shows a scatter plot of the design line load versus 𝐹𝐼10 for 2696 locations. There is a general trendof increasing design line load with increasing 𝐹𝐼10, i.e. the line load will tend to be higher in colder regions.However, data scatter presumably due to a combination of physical effects (e.g. different weather patterns atlocations of identical 𝐹𝐼10) and numerical effects (e.g. uncertainty in the distribution curve parameters due to
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Figure 3.5: Distributions of the magnitude of 31 seasonal peak line loads at 28 reservoirs, derived from the iceload model in Sections 2.3 and 2.4 for snow-covered ice. The number of line loads ≤ 1 kN∕m is indicated bythe red vertical line drawn near zero. Normal (solid line), Log-Normal (dashed line), and Gumbel (dash-dottedline) distributions were fitted with the probability plot method, treating line loads ≤ 1 kN∕m as nondetects(Section 2.5). Reservoir numbers are given in the plot (“M”-numbers). The expected number of winters withzero loads derived from the fitted distribution is stated in the plot if it exceeds 0.25. The reservoirs are orderedby increasing average Freezing Index. Note the different scales of the abscissae.
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Figure 3.6: Data of reservoir M2550 in Figure 3.5c on Normal Probability Paper. The ordered observed val-ues (“Observation x”) are shown on the ordinate while the scaled rank order number (“Reduced Variate y”) isshown on the abscissa. Eight nondetects are not shown. Fit parameters 𝜇 = 20.0 kN∕m and 𝜎 = 20.8 kN∕mcan be read off the fitted line (solid line). The value of the Cumulative Distribution Function (CDF) and associ-ated return period is shown above the plot. In this example, the peak line load with 50-year return period is
𝐿𝐿50 = 63 kN∕m (dashed line).
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Figure 3.7: 50-year recurrence value of thermal ice loadmodeled for 2696 locations (dots) with 𝐹𝐼10 from near0 to 2700 ◦Cdays in Norway.
the short underlying record of 31 years). Performing a linear fit on double-logarithmic scale, the best-fit powerline is

𝐿𝐿50 = 1.798 kN∕m 𝐹𝐼0.5910 , (3.7)
where 𝐹𝐼10 is in kN∕m. This is almost identical to the result from the deterministic model (Equation 3.12,Figure 3.7), and similar to the result from explicit equation. While data points fall into a band of ±20% of thebest-fit line, the actual scatter of the data is considerably narrower for 𝐹𝐼10 above 1000 to 2000 ◦Cdays. Anupper bound of the scattered data is approximated by

𝐿𝐿50 = 4kN∕m 𝐹𝐼0.510 . (3.8)
3.3.5 Ice Stress at Peak Load

Figure 3.8 shows the average ice stress at the time of peak line load determined from the probabilistic model.While the average, not including the zeros, is 143 kPa, one notices significant differences between the reser-voirs and years. Inter-annual differences may be due to differences in temperature and ice thickness.

3.4 Deterministic Model

3.4.1 Model Input

Based on seNorge weather data at 144 locations in Norway, 10-year minimum daily air temperature (Figure3.9) and 10-yearmaximum daily temperature rise (Figure 3.10) were plotted against the 10-year Freezing Index,
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Figure 3.8: Scatter plot of average ice stress at peak line load, i.e. line load divided by ice thickness at the time,for 2696 reservoirs over 31 winters. Dots at zero indicate absence of either ice or ice load. The horizontal lineindicates the average. Each dot represents one data point, colors are used to visually separate the seasons.
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Figure 3.9: Expected 10-year minimum daily air temperature as a function of 10-year Freezing Index (𝐹𝐼10)based on 144 locations from seNorge data. The best fit line is solid red, while dashed and dotted lines outlinelower and upper limits used Table 2.2.
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𝐹𝐼10. The best-fit lines are
𝜃𝑚𝑖𝑛,10 = −1.38 ◦C 𝐹𝐼0.40610 , and (3.9)
∆𝜃10 = 0.86 ◦C 𝐹𝐼0.37910 . (3.10)

3.4.2 Design Line Load

The relationship between thermal line loads and 10-year freezing index based on parameters in Table 2.2 isillustrated in Figure 3.11. Besides the nominal (“Reference”) parameter set, parameter sets that result in lower(“Low”) and higher (“High”) line loads are given, with coefficients changed by approximately 10%. Thermal lineloads are higher in the snow-free scenario (Scenario I) than in the lightly snow-covered scenario (Scenario II).They are expected to increase with freezing index, and the Reference line can be approximated by
𝐿𝐿 = 1.56 kN∕m 𝐹𝐼0.7210 for the snow-free scenario, and (3.11)
𝐿𝐿 = 1.18 kN∕m 𝐹𝐼0.6510 for the snow-covered scenario, (3.12)

where the 10-year Freezing Index𝐹𝐼10 is inmultiples of ◦Cdays. Line loads in the lightly snow-covered scenariobarely exceed 150 kN∕m. Equation 3.12 is also plotted in Figure 3.7 where it coincides with the best-fit line ofthe probabilistic model.

3.5 Explicit Equation

3.5.1 Design Line Load

The sensitivity to 𝐹𝐼10 of the term in brackets in Equation 2.30 shall be investigated. Using the relationshipsfrom Table 2.2, we denote the parameters 𝑐1 and 𝑐2 for
• ice thickness: 𝑐𝐻1 and 𝑐𝐻2 ,
• minimum temperature 𝑐01 and 𝑐02, and
• temperature rise 𝑐∆1 and 𝑐∆2 .
Startingwith the expressionℎ𝐻𝑖𝑐𝑒 in Equation 2.30 and the definition ofℎ for the snow-covered case (Table2.2),

ℎ𝐻𝑖𝑐𝑒 =
𝐻𝑖𝑐𝑒

1
𝑐𝐻1
+ 𝑐𝐻2 𝐻𝑖𝑐𝑒

, (3.13)

=
𝑐𝐻1 𝐻𝑖𝑐𝑒

1 + 𝑐𝐻1 𝑐𝐻2 𝐻𝑖𝑐𝑒
, (3.14)

and hence
1 + 𝑘𝑖

ℎ𝐻𝑖𝑐𝑒
= 1 + 𝑘𝑖 (𝑐𝐻2 + 1

𝑐𝐻1 𝐻𝑖𝑐𝑒
) (3.15)

we see that Equation 3.15 is rather insensitive to 𝐻𝑖𝑐𝑒 for all but the thinnest ice. For example, between
𝐻𝑖𝑐𝑒 = 0.2m and 1.5m, this expression changes only from 2.6 to 2.1. We therefore introduce constant 𝐶and substitute by setting

𝐶 = 1 + 𝑘𝑖
ℎ𝐻𝑖𝑐𝑒

, (3.16)
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with 𝐶 ≈ 2.2.The sum
1 + 𝛼𝑑

∆𝜃
𝜃0

= 1 + 𝛼𝑑
𝑐∆1
𝑐01
𝐹𝐼𝑐∆2 −𝑐02 (3.17)

is approximately constant since the difference 𝑐∆2 − 𝑐02 ≈ −0.05. I.e., this becomes
𝐷 = 1 + 𝛼𝑑

∆𝜃
𝜃0
, (3.18)

(3.19)
where 𝐷 ≈ 0.48. Hence, from Equation 2.22,

𝐿𝐿 = 𝐻𝑖𝑐𝑒𝜎0 [
𝐴
𝐵
2𝑘𝑖
𝜌𝑖𝑐𝑖

∆𝜃
𝐶

1
𝐻2
𝑖𝑐𝑒
( 𝐷𝜃02𝐶𝑇1

)
𝑚
]

1
𝑛

. (3.20)
If we express ∆𝜃, 𝜃0, and𝐻𝑖𝑐𝑒 in the square brackets in terms of 𝐹𝐼 we get

𝐿𝐿 = 𝐻𝑖𝑐𝑒𝜎0
⎡
⎢
⎣

𝐴
𝐵
2𝑘𝑖
𝜌𝑖𝑐𝑖

𝑐∆1
𝐶

1
(
𝑐𝐻1
)2 (

𝐷𝑐01
2𝐶𝑇1

)
𝑚⎤
⎥
⎦

1
𝑛

𝐹𝐼
𝑐∆2 −2𝑐

𝐻
2 +𝑚𝑐02
𝑛 (3.21)

Due to all factors 𝑐2 of the same order of magnitude and a relatively large factor 𝑛 in the denominator, thedependence of 𝜎𝑟 on 𝐹𝐼 (i.e. ∝ 𝐹𝐼0.034 ≈ 1.25) is much less than the dependence of𝐻𝑖𝑐𝑒 on 𝐹𝐼 (i.e. ∝ 𝐹𝐼0.5).Hence, as a first-order estimate one would expect that the thermal line load is proportional to ice thicknessmultiplied by a representative stress 𝜎𝑟 that is rather independent of the 𝐹𝐼10 of a given location. Substitutingall constants, we get

𝜎𝑟 = 100 kPa × [2 × 10
5

3.96
2 × 2

920 × 2100
1.05
2.2

1
0.02 × 0.02 (

0.48 × 1.38
2 × 2.2 )

1.92
]
1∕3.7

× 1.25 (3.22)
= 172 kPa. (3.23)

Hence, at a given location in Norway assuming a light snow cover, the deterministic estimate of peak seasonalline load based on peak seasonal ice thickness is
𝐿𝐿 = 170 kPa𝐻𝑖𝑐𝑒. (3.24)

For snow-free ice, we have 𝑐𝐻1 = 0.01 instead of 0.02, hence 𝐶 = 1.2 instead of 𝐶 = 2.2, and a value of 𝐹𝐼raised to its exponent of 0.75 instead of 1.25. Hence, 𝜎𝑟 ≈ 242 kPa.The key result is that the representative ice stress at peak load, 𝜎𝑟, is a constant for prescribed snow con-ditions, and hence the peak thermal ice load is proportional to ice thickness (Equation 2.22).
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Chapter 4

Discussion

4.1 Explicit Equation

Rudimentary efforts have been performed to evaluate the quality of the explicit equation. While the methodis able to reproduce the presented Reference results of the Deterministic Model (typical error of < 10% or
3 kN∕m, whichever is greater), the bounds of validity of this method are currently not well established. How-ever, known shortcomings include that the method will

• vastly overestimate the load if the starting temperature is low and the step change is small (e.g. an airtemperature increase from −30 to −28 ◦C. In this case, the method assumes the signal persists for toolong.),
• underestimate the load if the starting temperature is low and the step change reaches temperaturesclose to themelting point (the representative temperature of the temperature of the ice is overestimatedin this case, exaggerating creep),
• slightly overestimates loads (20% or 10 kN∕m) in the presence of substantial thermal surface insulation(≤ 1W∕(m2 K)).
While this model is physically based, it is tuned to the Reference case of the Deterministic Model. It shouldnot be expected to produce reasonable results for other parameters, especially not for different coefficientsof the stress model (𝐴, 𝐵, 𝑛,𝑚).The Explicit Equation assumes that thermal loads are brought about by well-defined temperature condi-tions and from that, predicts that a representative stress exists during a load peak. The well-defined conditionsstem from the expressions Equation 3.9 and 3.10 that were fitted to scattered air temperature data. Hence,while there may be such a thing as a representative stress corresponding to a representative load peak, notevery seasonally maximum peak is a representative peak. This is illustrated by the scatter in Figure 3.8 thatshows that the average ice stress during the seasonal peak event is expected to spread broadly. However, theaverage ice stress during the extrapolated 50-year line load event seems to be well-defined, as can be seen bythe square-root bound in Figure 3.7.

4.2 Peak Ice Load Probability Distribution

Maybe surprisingly, the seasonal peak line loads did not follow the GEV distribution. The GEV distributionapplies only if both the parent distribution of annual peaks and the number of annual maxima is sufficientlylarge. The meaning of sufficiently large depends on the (usually unknown) underlying distribution. With ahandful of candidate peaks each winter and 31 years of data, the data basis for an individual reservoir is likelytoo small to assume asymptotic convergence. This means that the 31 years of data will be sampled from an
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unknowndistribution. In addition, the distribution of annualmaxima is not stationary as ice thickness increasesduring the season and with it the likelihood of seeing a high load event.Apart from investigating the histograms, the obtained distributions were also plotted on probability paperto identify the most suitable probability distribution function. Given the small data set at each location anddifferences between locations, the analysis was anecdotal. However, there was no indication that any of thetested distribution consistently outperformed the Normal distribution.

4.3 Other Effects

Several effects have not been considered in this study. Thin ice could possibly buckle before exerting the fulltheoretical load onto the dam (Michel, 1970), the elastic modulus of ice depends on inclusions and crystalstructure (Kharik et al., 2018), a thick snow cover could nearly insulate the ice or even depress it below thewater, and solar radiation can induce an ice temperature signal. The shape and stiffness of dams was notconsidered, nor was the difference between local and global line loads addressed. Buckling could be addressedthough an equation that describes the upper possible limit of loads. In the absence of these considerations,the predicted loads may be too high. However, modeling ice properties and heavy snow loads would require adedicated study. Absorption of solar radiation could be introduced into the model but would require a handleon typical atmospheric and optical properties of the snow cover. Significant solar irradiation is typically absentin parts of Norway at the height of winter. However, in its presence a diurnal signal could introduce thermalloads while general warming of the ice would reduce loads due to increased creep.
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Chapter 5

Conclusion

This study investigated amethod to introduce a thermal ice load that takes account for the regional differencesin mainland Norwegian climate. While the project started with a focus on regions with low freezing degreedays, the project reference group expressed the desire to extend the scope across the entire spectrum ofNorwegian environmental conditions. During preliminary investigations into this matter, it became clear thatattention ought to be paid to the regional differences in snow cover throughout Norway, an aspect that shouldbe taken up in future studies. Instead, this project assumed “lightly snow-covered ice” throughout, consistentwith the ice thickness equation currently found in the regulations (NVE, 2003). Also, inhomogeneous or dif-fering ice properties were not considered explicitly. In order to be relevant to coastal regions in Norway withoccasional melting temperatures in winter, ice conditions were expressed in terms of the Freezing Index ratherthan Freezing Degree Days. This distinction is immaterial for regions that are consistently cold throughoutwinter.Ice loads were calculated with a probabilistic model, deterministic model, and an explicit equation. Theresults of themethods were consistent, albeit a bit uncertain. Amethodological part of the problem is that lineload probability distributionswere derived for reservoirs individually, based on data of only 31 years. Given con-siderable inter-annual variability, there was uncertainty in the parameters derived of the distribution, leadingto scattered results. An upper bound for the design line load was
𝐿𝐿50 = 4kN∕m 𝐹𝐼0.510 , (5.1)

while the best fit line is up to 20 kN∕m lower.In order to evaluate line loads probabilistically, a method from the biomedical field was introduced tothe field of ice load modeling. Especially in Norwegain coastal regions, the peak ice loads may be zero insome winters. The years of absent line loads were treated like nondetects in other fields, i.e. data points thatare there but lie below the limit at which they can be quantified. It turned out that the Normal distributiondescribed the histogram of line loads at any given reservoir at least as well as other distributions tested, whilealso giving superior predictions of the frequency of ice load-free years.A deterministic ice load model was developed based on a-priori relationships between the local FreezingIndex and ice thickness, minimum air temperature, and maximum daily air temperature rise. If these rela-tionships differ across the globe then the results of this study may not be universally applicable either. Therelationships were determined for Norway between the local Freezing Index and either minimum air temper-ature or maximum daily air temperature rise. The best fit line removed the scatter of the data, resulting inmodel results that were free from scatter. A subsequent sensitivity analysis helped identify the parametersthe models are most sensitive to, ice thickness and ice temperature being among the most important.The deterministic model was reduced to an explicit equation. This equation expressed the design line loadas the product of ice thickness and a characteristic ice stress. It also suggested that the interdependenciesof ice thickness, minimum air temperature and air temperature rise are such that the characteristic stress isalmost independent of the reservoir: under the current climatic conditions in Norway, and assuming “lightly
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snow-covered ice” everywhere. Hence, Equation 5.1 is an engineering equation that may be interpreted as theproduct of ice thickness with a constant characteristic ice stress.
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